【題目】某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無(wú)月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;
(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.
【答案】(1)①;30;(2)y1=0.1x+30; y2=0.2x;(3)見(jiàn)解析
【解析】
試題分析:(1)根據(jù)當(dāng)通訊時(shí)間為零的時(shí)候的函數(shù)值可以得到哪種方式有月租,哪種方式?jīng)]有,有多少;
(2)根據(jù)圖象經(jīng)過(guò)的點(diǎn)的坐標(biāo)設(shè)出函數(shù)的解析式,用待定系數(shù)法求函數(shù)的解析式即可;
(3)求出當(dāng)兩種收費(fèi)方式費(fèi)用相同的時(shí)候自變量的值,以此值為界說(shuō)明消費(fèi)方式即可.
解:(1)①;30;
(2)設(shè)y1=k1x+30,y2=k2x,由題意得:將(500,80),(500,100)分別代入即可:
500k1+30=80,
∴k1=0.1,
500k2=100,
∴k2=0.2
故所求的解析式為y1=0.1x+30; y2=0.2x;
(3)當(dāng)通訊時(shí)間相同時(shí)y1=y2,得0.2x=0.1x+30,解得x=300;
當(dāng)x=300時(shí),y=60.
故由圖可知當(dāng)通話時(shí)間在300分鐘內(nèi),選擇通話方式②實(shí)惠;
當(dāng)通話時(shí)間超過(guò)300分鐘時(shí),選擇通話方式①實(shí)惠;
當(dāng)通話時(shí)間在300分鐘時(shí),選擇通話方式①、②一樣實(shí)惠.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品公司產(chǎn)銷一種食品,已知每月的生產(chǎn)成本y1與產(chǎn)量x之間是一次函數(shù)關(guān)系,函數(shù)y1與自變量z(kg)的部分對(duì)應(yīng)值如下表:
x(單位:kg) | 10 | 20 | 30 |
y1(單位:/元) | 3030 | 3060 | 3090 |
(1)求y1與x之間的函數(shù)關(guān)系式;
(2)經(jīng)過(guò)試銷發(fā)現(xiàn),這種食品每月的銷售收入y2(元)與銷量x(kg)之間滿足如圖所示的函數(shù)關(guān)系
①y2與x之間的函數(shù)關(guān)系式為 ;
②假設(shè)該公司每月生產(chǎn)的該種食品均能全部售出,那么該公司每月至少要生產(chǎn)該種食品多少kg,才不會(huì)虧損?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)F為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,BE=BF,連接AE,EF和CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0).下列說(shuō)法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則y1>y2.
其中說(shuō)法正確的是( 。
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
(1)求∠ECD的度數(shù);
(2)若CE=5,求BC長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.
下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.
(1)思路梳理
∵AB=AD
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°,點(diǎn)F、D、G共線根據(jù)SAS,易證△AFG≌ ,從而可得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),仍有EF=BE+DF.
請(qǐng)寫出推理過(guò)程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過(guò)A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);
(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求△ACQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的兩外角平分線的交點(diǎn),下列結(jié)論:①OB=OC;②點(diǎn)O到AB、AC的距離相等;③點(diǎn)O到△ABC的三邊的距離相等;④點(diǎn)O在∠A的平分線上.其中結(jié)論正確的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com