將點(diǎn)A(4
3
,0)繞著原點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)60°得到點(diǎn)B,則點(diǎn)B的坐標(biāo)是
 
分析:由題意可知,A(4
3
,0).繞著原點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)60°得B,我們可以用作圖法來(lái)完成,過(guò)B作BD⊥x軸,BC⊥y軸,知OB=4
3
,∠BOC=30°,根據(jù)勾股定理,BC=2
3
,OC=6,又因?yàn)辄c(diǎn)B在第四象限,故B(2
3
,-6).
解答:精英家教網(wǎng)解:我們可畫(huà)出A旋轉(zhuǎn)過(guò)后的圖形,如圖,知,
OB=4
3
,∠BOC=30°,
∴OB=2
3

由勾股定理知,OC=6,
又∵B位于第四象限,
故B(2
3
,-6).
點(diǎn)評(píng):考查學(xué)生對(duì)旋轉(zhuǎn)問(wèn)題的熟練應(yīng)用,以及掌握數(shù)形結(jié)合的數(shù)學(xué)思想來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分別為邊AB,AC的中點(diǎn),將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°到△A1BC1的位置,則整個(gè)旋轉(zhuǎn)過(guò)程中線段OH所掃過(guò)部分的面積(即陰影部分面積)為( 。
A、
7
3
π-
7
8
3
B、
4
3
π+
7
8
3
C、π
D、
4
3
π+
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖1是邊長(zhǎng)分別為4
3
和3的兩個(gè)等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長(zhǎng)線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
請(qǐng)問(wèn):經(jīng)過(guò)多少時(shí)間,△PQR與△ABC重疊部分的面積恰好等于
7
3
4
?
(3)操作:圖1中△C′D′E′固定,將△ABC移動(dòng),使頂點(diǎn)C落在C′E′的中點(diǎn),邊BC交D′E′于點(diǎn)M,邊AC交D′C′于點(diǎn)N,設(shè)
∠AC C′=α(30°<α<90,圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒(méi)有變化,請(qǐng)你求出C′N•E′M的值,如果有變化,請(qǐng)你說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•營(yíng)口)如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫(xiě)出結(jié)論;
②將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=
43
,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,求BD2+AF2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,梯形OABC中,BC∥AO,∠BAO=90°,B(-3
3
,3),直線OC的解析式為y=-
3
x,將△OBC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°后,O到O1,B到B1,得△O1B1C.
(1)求證:點(diǎn)O1在x軸上;
(2)將點(diǎn)O1運(yùn)動(dòng)到點(diǎn)M(-4
3
,0),求∠B1MC的度數(shù);
(3)在(2)的條件下,將直線MC向下平移m個(gè)單位長(zhǎng)度,設(shè)直線MC與線段AB交于點(diǎn)P,與線段OC的交于點(diǎn)Q,四邊形OAPQ的面積為S,求S與m的函數(shù)關(guān)系式,并求出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案