【題目】為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“舞蹈”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖所提供的倍息,解答下列問題:
(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;
(2 )補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù);
(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干,但只能選兩名學(xué)生,請(qǐng)你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.
【答案】(1)本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見解析;(3)估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù)為800人;(4).
【解析】
(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);
(2)先計(jì)算出選“舞蹈”的人數(shù),再計(jì)算出選“打球”的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;
(3)用2000乘以樣本中選“打球”的人數(shù)所占的百分比可估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù);
(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選到一男一女的結(jié)果數(shù),然后根據(jù)概率公式求解.
(1)30÷30%=100,
所以本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;
(2)選”舞蹈”的人數(shù)為100×10%=10(人),
選“打球”的人數(shù)為100﹣30﹣10﹣20=40(人),
補(bǔ)全條形統(tǒng)計(jì)圖為:
(3)2000×=800,
所以估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù)為800人;
(4)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中選到一男一女的結(jié)果數(shù)為8,
所以選到一男一女的概率=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D是BC邊的中點(diǎn)連接AD,則易證AD=BD=CD,即AD=BC;如圖2,若將題中AB=AC這個(gè)條件刪去,此時(shí)AD仍然等于BC.
理由如下:延長AD到H,使得AH=2AD,連接CH,先證得△ABD≌△CHD,此時(shí)若能證得△ABC≌△CHA,
即可證得AH=BC,此時(shí)AD=BC,由此可見倍長過中點(diǎn)的線段是我們?nèi)切巫C明中常用的方法.
(1)請(qǐng)你先證明△ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;
(2)現(xiàn)將圖1中△ABC折疊(如圖3),點(diǎn)A與點(diǎn)D重合,折痕為EF,此時(shí)不難看出△BDE和△CDF都是等腰直角三角形.BE=DE,CF=DF.由勾股定理可知DE2+DF2=EF2,因此BE2+CF2=EF2,若圖2中△ABC也進(jìn)行這樣的折疊(如圖4),此時(shí)線段BE、CF、EF還有這樣的關(guān)系式嗎?若有,請(qǐng)證明;若沒有,請(qǐng)舉反例.
(3)在(2)的條件下,將圖3中的△DEF繞著點(diǎn)D旋轉(zhuǎn)(如圖5),射線DE、DF分別交AB、AC于點(diǎn)E、F,此時(shí)(2)中結(jié)論還成立嗎?請(qǐng)說明理由.圖4中的△DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖反映是小明從家去食堂吃早餐,接著去圖書館讀報(bào),然后回家的過程.其中x表示時(shí)間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上.根據(jù)圖中提供的信息,解答下列問題:
(1)食堂離小明家___________km;
(2)小明在食堂吃早餐用了 分鐘,在圖書館讀報(bào)用了______min;
(3)由圖象知:_________位于________和__________之間( 填“小明家”、“食堂”、“圖書館” )
(4)求小明從圖書館回家的平均速度是多少千米/時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)E在線段AC上,連接BE,點(diǎn)D在直線BC上,且CE=CD,連接ED、AD,點(diǎn)F是BE的中點(diǎn),連接FA、FD.
(1)若CD=6,BC=10,求△BEC的面積;
(2)當(dāng)AE=CE時(shí),求證:AD=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, ,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn),M是AB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=∠AOD;③DM⊥CE;④CM+DM的最小值是10,其中正確的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊訓(xùn)練班中的甲、乙兩名選手在5次射擊訓(xùn)練中的成績依次為(單位:環(huán)):
甲:8,8,7,8,9
乙:5,9,7,10,9
教練根據(jù)他們的成績繪制了如下尚不完整的統(tǒng)計(jì)圖表:
選手 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲 | 8 | b | 8 | 0.4 |
乙 | α | 9 | c | 3.2 |
根據(jù)以上信息,請(qǐng)解答下面的問題:
(1)α= ,b= ,c= ;
(2)完成圖中表示乙成績變化情況的折線;
(3)教練根據(jù)這5次成績,決定選擇甲參加射擊比賽,教練的理由是什么?
(4)若選手乙再射擊第6次,命中的成績是8環(huán),則選手乙這6次射擊成績的方差與前5次射擊成績的方差相比會(huì) .(填“變大”、“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)三角形知識(shí)時(shí),發(fā)現(xiàn)如下三個(gè)有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點(diǎn),ME⊥BC,垂足為E,∠AME的平分線交直線AB于點(diǎn)F.
(1)如圖①,M為邊AC上一點(diǎn),則BD、MF的位置關(guān)系是 ;
如圖②,M為邊AC反向延長線上一點(diǎn),則BD、MF的位置關(guān)系是 ;
如圖③,M為邊AC延長線上一點(diǎn),則BD、MF的位置關(guān)系是 ;
(2)請(qǐng)就圖①、圖②、或圖③中的一種情況,給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com