【題目】如圖,的外角的平分線交邊的垂直平分線于點(diǎn),于,于.
(1)求證:;
(2)若,,求的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)2
【解析】
(1)連接PB、PC,根據(jù)線段垂直平分線的性質(zhì)得到PB=PC,根據(jù)角平分線的性質(zhì)得到PD=PE,證明Rt△BPD≌Rt△CPE,根據(jù)全等三角形的性質(zhì)證明;
(2)證明Rt△ADP≌Rt△AEP,得到AD=AE,根據(jù)題意列出方程,解方程即可.
(1)證明:連接PB、PC,
∵PQ是BC邊的垂直平分線,
∴PB=PC,
∵AP平分∠DAC,PD⊥AB,PE⊥AC,
∴PD=PE,
在Rt△BPD和Rt△CPE中,
,
∴Rt△BPD≌Rt△CPE(HL),
∴BD=CE;
(2)在Rt△ADP和Rt△AEP中,
,
∴Rt△ADP≌Rt△AEP,
∴AD=AE,
∴AD+6=10AD,
解得,AD=2(cm).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,某企業(yè)決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備;現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格、月處理污水量及年消耗費(fèi)如下表:
A型 | B型 | |
價(jià)格(萬(wàn)元/臺(tái)) | 12 | 10 |
處理污水量(噸/月) | 240 | 200 |
年消耗費(fèi)(萬(wàn)元/臺(tái)) | 1 | 1 |
經(jīng)預(yù)算,該企業(yè)購(gòu)買(mǎi)設(shè)備的資金不高于105萬(wàn)元。
(1) 請(qǐng)你設(shè)計(jì)該企業(yè)有幾種購(gòu)買(mǎi)方案;
(2)若該企業(yè)每月產(chǎn)生的污水量為2040噸,為了節(jié)約資金,應(yīng)選擇哪種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,以AC為邊在△ABC外作等邊三角形ACD,過(guò)點(diǎn)D作AC的垂線,垂足為F,與AB相交于點(diǎn)E,連接CE.
(1)證明:AE=CE=BE;
(2)若DA⊥AB,BC=6,P是直線DE上的一點(diǎn).則當(dāng)P在何處時(shí),PB+PC最小,并求出此時(shí)PB+PC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為∠BAC的外角平分線上一點(diǎn),并且滿足BD=CD,過(guò)D作DE⊥AC于E,DF⊥AB交BA的延長(zhǎng)線于F,則下列結(jié)論:①;②∠DBC=∠DCB;③CE=AB+AE④∠BDC=∠BAC,其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某高速公路建設(shè)中需要確定隧道AB的長(zhǎng)度.已知在離地面1500m高度C
處的飛機(jī)上,測(cè)量人員測(cè)得正前方A、B兩點(diǎn)處的俯角分別為60°和45°.求隧道AB的長(zhǎng)
(≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:選取二次三項(xiàng)式中兩項(xiàng),配成完全平方式的過(guò)程叫配方,配方的基本形式是完全平方公式的逆寫(xiě),即.例如:
①選取二次項(xiàng)和一次項(xiàng)配方:
②選取二次項(xiàng)和常數(shù)項(xiàng)配方:,或
③選取一次項(xiàng)和常數(shù)項(xiàng)配方:
請(qǐng)根據(jù)閱讀材料解決下列問(wèn)題:
(1)比照上面的例子,將二次三項(xiàng)式配成完全平方式(直接寫(xiě)出兩種形式);
(2)將分解因式;
(3)已知、、是的三邊長(zhǎng),且滿足,試判斷此三角形的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,矩形ABCO的頂點(diǎn),分別在x軸、y軸上,且直線交y軸于點(diǎn)D,交x軸于點(diǎn)E,且以點(diǎn)E為圓心,EC為半徑作,交y軸負(fù)半軸于點(diǎn)F.
求直線DE的解析式;
當(dāng)與直線AB相切時(shí),求a的值;
如圖2,過(guò)F作DE的垂線交于點(diǎn)G,連結(jié)GE并延長(zhǎng)交于點(diǎn)H,連結(jié)GD,F(xiàn)H.
求的值;
試探究的值是否與a有關(guān)?若有關(guān),請(qǐng)用含a的代數(shù)式表示;若無(wú)關(guān),則求出它的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)計(jì)劃對(duì)該社區(qū)的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo),由甲、乙兩個(gè)施工隊(duì)來(lái)完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,若兩隊(duì)獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用3天,求甲、乙兩施工隊(duì)每天分別能完成綠化的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB⊥BD,AB∥ED,AB=ED,要說(shuō)明△ABC≌△EDC,若以“SAS”為依據(jù),還要添加的條件為 ;若添加條件AC=EC,則可以用 公理(或定理)判定全等.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com