(2011•舟山)如圖,△ABC中,以BC為直徑的圓交AB于點D,∠ACD=∠ABC.
(1)求證:CA是圓的切線;
(2)若點E是BC上一點,已知BE=6,tan∠ABC=,tan∠AEC=,求圓的直徑.

(1)證明:∵BC是直徑,
∴∠BDC=90°,
∴∠ABC+∠DCB=90°,
∵∠ACD=∠ABC,
∴∠ACD+∠DCB=90°,
∴BC⊥CA,∴CA是圓的切線.
(2)解:在Rt△AEC中,tan∠AEC=,
=,
EC=AC,
在Rt△ABC中,tan∠ABC=,
=
BC=AC,
∵BC﹣EC=BE,BE=6,
,
解得:AC=
∴BC=×=10,
答:圓的直徑是10.

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•舟山)如圖,△ABC中,以BC為直徑的圓交AB于點D,∠ACD=∠ABC.
(1)求證:CA是圓的切線;
(2)若點E是BC上一點,已知BE=6,tan∠ABC=,tan∠AEC=,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•舟山)如圖,在△ABC中,AB=AC,∠A=40°,則△ABC的外角∠BCD= ___________________度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•舟山)如圖,邊長為4的等邊△ABC中,DE為中位線,則四邊形BCED的面積為( 。
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川成都卷)數(shù)學解析版 題型:填空題

(2011•舟山)如圖,已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(﹣1,0),(1,﹣2),當y隨x的增大而增大時,x的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(四川成都卷)數(shù)學解析版 題型:解答題

(2011•舟山)如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù)(k≠0)的圖象上.
(1)求a的值;
(2)直接寫出點P′的坐標;
(3)求反比例函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案