分析 將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),然后解直角三角形求得等邊三角形的邊長(zhǎng),即可得到結(jié)論.
解答 解:∵△ABC為等邊三角形,
∴BA=BC,
可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,
連接EP,過A作AD⊥BP交BP的延長(zhǎng)線于D,如圖,
∴BE=BP=4,AE=PC=5,∠PBE=60°,
∴△BPE為等邊三角形,
∴PE=PB=4,∠BPE=60°,
在△AEP中,AE=5,AP=3,PE=4,
∴AE2=PE2+PA2,
∴△APE為直角三角形,且∠APE=90°,
∴∠APB=90°+60°=150°,
∴∠APD=30°,
在Rt△APD中,AD=$\frac{1}{2}$PA=$\frac{3}{2}$,PD=AP•cos30°=$\frac{3\sqrt{3}}{2}$,
則BD=PB+PD=4+$\frac{3\sqrt{3}}{2}$,
在Rt△ABD中,AB2=AD2+BD2=25+12$\sqrt{3}$,
過A作AF⊥BC于F,則AF=$\frac{\sqrt{3}}{2}$AB,
∴△ABC的面積=$\frac{1}{2}$BC•AF=$\frac{1}{2}$AB•$\frac{\sqrt{3}}{2}$AB=$\frac{\sqrt{3}}{4}$AB2=9+$\frac{25\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.解決本題的關(guān)鍵是勾股定理的應(yīng)用和證明∠APE=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{\frac{1}{x-2}}$ | B. | $\sqrt{x-2}$ | C. | $\sqrt{\frac{1}{x+2}}$ | D. | $\sqrt{x+2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,2)和(2,3)表示一個(gè)點(diǎn) | B. | 點(diǎn)($\sqrt{3}$,0)在x軸的正半軸上 | ||
C. | 點(diǎn)(-2,4)在第四象限 | D. | 點(diǎn)(3,-1)到x軸的距離為3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com