精英家教網 > 初中數學 > 題目詳情

如圖,在矩形ABCD中,AD=4,M是AD的中點,點E是線段AB上一動點,連接EM并延長交線段CD的延長線于點F.

(1)如圖1,求證:AE=DF;
(2)如圖2,若AB=2,過點M作 MG⊥EF交線段BC于點G,求證:△GEF是等腰直角三角形
(3)如圖3,若AB=,過點M作 MG⊥EF交線段BC的延長線于點G.
①直接寫出線段AE長度的取值范圍;
②判斷△GEF的形狀,并說明理由.

(1)由△AEM≌△DFM可證得(2)關鍵是證GE=GF,再證有個角是直角。
(3)①<AE≤. ②△GEF是等邊三角形

解析試題分析:解:(1)證明:如圖1,在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.

∵M是AD的中點,∴AM=DM,
∴△AEM≌△DFM(ASA).
∴AE=DF.           2分
(2)證明:如圖2,過點G作GH⊥AD于H,

∴∠A=∠B=∠AHG=90°,
∴四邊ABGH為矩形,
∴∠AME+∠AEM=90°,
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°
∴∠AEM=∠GMH.
∵AD=4,M是AD的中點
∴AM=2
∵四邊ABGH為矩形,
∴AB=HG=2
∴AM=HG
∴△AEM≌△HMG(AAS).
∴ME=MG.
∴∠EGM=45°.
由(1)得△AEM≌△DFM,
∴ME=MF.
∵MG⊥EF,
∴GE=GF.
∴∠EGF=2∠EGM=90°.
∴△GEF是等腰直角三角形.           5分
(3 )①當C、G重合時,如圖4,

∵四邊形ABCD是矩形,
∴∠A=∠ADC=90°,
∴∠AME+∠AEM=90°.
∵MG⊥EF,
∴∠EMG=90°.
∴∠AME+∠DMC=90°,
∴∠AEM=∠DMC,
∴△AEM∽△DMC
,
,
∴AE=
當E、B重合時,AE最長為,
<AE≤.        7分(注:此小問只需直接寫出結果即可)
②如圖3,△GEF是等邊三角形.

證明:過點G作GH⊥AD交AD延長線于點H,
∵∠A=∠B=∠AHG=90°,
∴四邊形ABGH是矩形.
∴GH=AB=2
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°.
∵∠AME+∠AEM=90°,
∴∠AEM=∠GMH.
又∵∠A=∠GHM=90°,
∴△AEM∽△HMG.

在Rt△GME中,
∴tan∠MEG==
∴∠MEG=60°.
 由(1)得△AEM≌△DFM.
∴ME=MF.
∵MG⊥EF,  ∴GE=GF.
∴△GEF是等邊三角形.           9分
考點:矩形的性質、三角形的全等與相似、等腰直角三角形、等邊三角形、特殊三角函數值
點評:此題比較綜合,四邊形的相關性質和定理一般都由三角形性質和定理得來,故在解四邊形時,通常會結合三角形的性質與定理幫助解題,難度適中。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設經過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數關系的是( 。
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網
(1)判斷直線CE與⊙O的位置關系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數關系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設CE=x,BF=y.
(1)求y與x的函數關系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設線段AB的長為m,上述其它條件不變,m為何值時,函數y的最大值等于3?

查看答案和解析>>

同步練習冊答案