如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=-
23
x+2
與x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,直線y2=kx+b(k≠精英家教網(wǎng)0)經(jīng)過點(diǎn)C(1,0)且與線段AB交于點(diǎn)P,并把△ABO分成兩部分.
(1)求△ABO的面積;
(2)若△ABO被直線CP分成的兩部分的面積相等,求點(diǎn)P的坐標(biāo)及直線CP的函數(shù)表達(dá)式.
分析:(1)已知直線y1的解析式,分別令x=0,y=0求出A,B的坐標(biāo),繼而求出S△ABO
(2)由(1)得S△ABO,推出S△APC的面積為
3
2
,求出yp=
3
2
,繼而求出點(diǎn)P的坐標(biāo),依題意可知點(diǎn)C,P的坐標(biāo),聯(lián)立方程組求出k,b的值后求出函數(shù)解析式.
解答:解:(1)在直線y1=-
2
3
x+2
中,令x=0,得y1=2,
∴B(0,2),精英家教網(wǎng)
令y1=0,得x=3,
∴A(3,0),
S△ABO=
1
2
AO•BO=
1
2
×3×2=3
;

(2)
1
2
S△ABO=
1
2
×3=
3
2
,
∵點(diǎn)P在第一象限,
S△APC=
1
2
AC•yp=
1
2
×(3-1)×yp=
3
2
,
解得yp=
3
2
,
而點(diǎn)P又在直線y1上,
3
2
=-
2
3
x+2

解得x=
3
4
,
∴P(
3
4
,
3
2
),
將點(diǎn)C(1,0)、P(
3
4
3
2
),代入y=kx+b中,有
0=k+b
3
2
=
3
4
k+b
,
k=-6
b=6

∴直線CP的函數(shù)表達(dá)式為y=-6x+6.
點(diǎn)評(píng):本題考查的是一次函數(shù)的性質(zhì)以及三角形面積的綜合運(yùn)用,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案