【題目】劉同學(xué)在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點(diǎn)距離地面的高米.米,當(dāng)?shù)醣垌敹擞?/span>點(diǎn)抬升至點(diǎn)(吊臂長度不變時),地面處的重物(大小忽略不計)被吊至處,緊繃著的吊纜.且

(1)求此重物在水平方向移動的距離及在豎直方向移動的距離;

(2)若這臺吊車工作時吊桿最大水平旋轉(zhuǎn)角度為,吊桿與水平線的傾角可以從轉(zhuǎn)到,求吊車工作時,工作人員不能站立的區(qū)域的面積.

【答案】(1)3米,

(2)平方米

【解析】

(1)先過點(diǎn)于點(diǎn),交于點(diǎn),則得出,通過解直角三角形得出,從而求出;先解直角三角形,得出,然后求出;

(2)吊桿端點(diǎn)最遠(yuǎn)水平距離為吊桿與水平線的傾角為時,所以代入數(shù)值求解直角三 角形即可求出 的長,即吊車工作時工作人員不能站立的區(qū)域的半徑,由圓的面積的公式即可去求出區(qū)域面積.

解:(1)過點(diǎn)于點(diǎn),交于點(diǎn)

根據(jù)題意可知

中,,

,在中,

,

中,

答:此重物在水平方向移動的距離是3米,此重物在豎直方向移動的距離米;

(2)當(dāng)水平距離為吊桿與水平線的傾角為時,即吊車工作時工作人員不能站立的區(qū)域的半徑,

中,

這臺吊車工作時吊桿最大水平旋轉(zhuǎn)角度為

工作人員不能站立的區(qū)域的面積為:(平方米)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A點(diǎn),D點(diǎn)分別在x軸、y軸上,對角線BDx軸,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點(diǎn)E,若點(diǎn)A(20),D(04),則k的值為( )

A.16B.20C.32D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC.

(1)試用直尺和圓規(guī)在AC上找一點(diǎn)D,使AD=BD(不寫作法,但需保留作圖痕跡).

(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,對角線交于,以為圓心、長為半徑畫弧,交于點(diǎn),若點(diǎn)恰好在圓弧上,且,則陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),且.直線與拋物線交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn),設(shè)直線上方的拋物線上的動點(diǎn)的橫坐標(biāo)為

1)連接,求證:四邊形是平行四邊形;

2)連接,當(dāng)為何值時?

3)在直線上是否存在一點(diǎn),使為等腰直角三角形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是( )

A.機(jī)場對乘客進(jìn)行安檢不能采用抽樣調(diào)查

B.一組數(shù)據(jù)10,11,129,8的平均數(shù)是10,方差是2

C.清明時節(jié)雨紛紛是隨機(jī)事件

D.一組數(shù)據(jù)6,5,3,5,4的眾數(shù)是5,中位數(shù)是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在三角形紙片ABC中,∠BAC=78°AC=10.?dāng)?shù)學(xué)實(shí)踐課上,小敏用5張這樣的三角形紙片拼成了一個內(nèi)外都是正五邊形的圖形(如圖2所示),并通過上網(wǎng)查到以下幾個數(shù)據(jù):sin78°≈0.98,cos78°≈0.21,tan78°≈4.7.請你幫助她解決下列問題:

1)∠ABC= °

2)求正五邊形GHMNC的邊GC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn)和點(diǎn),頂點(diǎn)為

1)求的值;

2)若的坐標(biāo)為,當(dāng)時,二次函數(shù)有最大值,求的值;

3)直線與直線、直線分別相交于,若拋物線與線段(包含兩點(diǎn))有兩個公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)Bx軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.

查看答案和解析>>

同步練習(xí)冊答案