【題目】劉同學(xué)在課外活動中觀察吊車的工作過程,繪制了如圖所示的平面圖形.已知吊車吊臂的支點(diǎn)距離地面的高米.米,當(dāng)?shù)醣垌敹擞?/span>點(diǎn)抬升至點(diǎn)(吊臂長度不變時),地面處的重物(大小忽略不計)被吊至處,緊繃著的吊纜.且.
(1)求此重物在水平方向移動的距離及在豎直方向移動的距離;
(2)若這臺吊車工作時吊桿最大水平旋轉(zhuǎn)角度為,吊桿與水平線的傾角可以從轉(zhuǎn)到,求吊車工作時,工作人員不能站立的區(qū)域的面積.
【答案】(1)3米,米
(2)平方米
【解析】
(1)先過點(diǎn)作于點(diǎn),交于點(diǎn),則得出,通過解直角三角形和得出與,從而求出;先解直角三角形,得出,然后求出;
(2)吊桿端點(diǎn)最遠(yuǎn)水平距離為吊桿與水平線的傾角為時,所以代入數(shù)值求解直角三 角形即可求出 的長,即吊車工作時工作人員不能站立的區(qū)域的半徑,由圓的面積的公式即可去求出區(qū)域面積.
解:(1)過點(diǎn)作于點(diǎn),交于點(diǎn)
根據(jù)題意可知
在中,,
,在中,
,
在中,
答:此重物在水平方向移動的距離是3米,此重物在豎直方向移動的距離是米;
(2)當(dāng)水平距離為吊桿與水平線的傾角為時,即吊車工作時工作人員不能站立的區(qū)域的半徑,
在中,,
這臺吊車工作時吊桿最大水平旋轉(zhuǎn)角度為
工作人員不能站立的區(qū)域的面積為:(平方米)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCD的頂點(diǎn)A點(diǎn),D點(diǎn)分別在x軸、y軸上,對角線BD∥x軸,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點(diǎn)E,若點(diǎn)A(2,0),D(0,4),則k的值為( )
A.16B.20C.32D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC.
(1)試用直尺和圓規(guī)在AC上找一點(diǎn)D,使AD=BD(不寫作法,但需保留作圖痕跡).
(2)在(1)中,連接BD,若BD=BC,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,對角線、交于,以為圓心、長為半徑畫弧,交于點(diǎn),若點(diǎn)恰好在圓弧上,且,則陰影部分的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),且.直線與拋物線交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn),設(shè)直線上方的拋物線上的動點(diǎn)的橫坐標(biāo)為.
(1)連接,求證:四邊形是平行四邊形;
(2)連接,,當(dāng)為何值時?
(3)在直線上是否存在一點(diǎn),使為等腰直角三角形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A.機(jī)場對乘客進(jìn)行安檢不能采用抽樣調(diào)查
B.一組數(shù)據(jù)10,11,12,9,8的平均數(shù)是10,方差是2
C.“清明時節(jié)雨紛紛”是隨機(jī)事件
D.一組數(shù)據(jù)6,5,3,5,4的眾數(shù)是5,中位數(shù)是3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在三角形紙片ABC中,∠BAC=78°,AC=10.?dāng)?shù)學(xué)實(shí)踐課上,小敏用5張這樣的三角形紙片拼成了一個內(nèi)外都是正五邊形的圖形(如圖2所示),并通過上網(wǎng)查到以下幾個數(shù)據(jù):sin78°≈0.98,cos78°≈0.21,tan78°≈4.7.請你幫助她解決下列問題:
(1)∠ABC= °;
(2)求正五邊形GHMNC的邊GC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn)和點(diǎn),頂點(diǎn)為.
(1)求、的值;
(2)若的坐標(biāo)為,當(dāng)時,二次函數(shù)有最大值,求的值;
(3)直線與直線、直線分別相交于、,若拋物線與線段(包含、兩點(diǎn))有兩個公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)B在x軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com