【題目】如圖,ACE,ACD均為直角三角形,∠ACE=90°,ADC=90°,AECD相交于點P,以CD為直徑的⊙O恰好經(jīng)過點E,并與AC,AE分別交于點B和點F.

(1)求證:∠ADF=EAC.

(2)若PC=PA,PF=1,求AF的長.

【答案】1)證明見解析;(2

【解析】

(1)由∠ACE=90°,得到∠EAC+∠FEC=90°.由∠ADC=90°,得到∠ADF+∠CDF=90°.從而有∠ADF=∠EAC;

(2)連接FC.先證△CPF∽△APC,再由相似三角形的性質(zhì)得到PA的長,從而得到結(jié)論.

(1)證明:∵∠ACE=90°,

∴∠EAC+∠FEC=90°.

∵∠ADC=90°,

∴∠ADF+∠CDF=90°.

又∵∠CDF=∠FEC

∴∠ADF=∠EAC

(2)如圖,連接FC

CD為⊙O的直徑,

∴∠CFD=90°,

∴∠PCF+∠CDF=90°.

∵∠CDF=∠AEC,

∴∠CDF=∠PAC

又∵∠CPF=∠APC

∴△CPF∽△APC,

,

PC=PA,PF=1

,解得:PA=,

AF=PA-PF=-1=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點CAB上方的圓上一動點,過點C作⊙O的切線l,過點A作直線l的垂線AD,交⊙O于點D,連接OC,CD,BC,BD,且BDOC交于點 E

1)求證:△CDE≌△CBE;

2)若AB6,填空:

①當的長度是   時,△OBE是等腰三角形;

②當BC   時,四邊形OADC為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,AC8,BC6,點DAB的中點,點EAC上,將ADE沿DE翻折,使點A落在點A′處,當A′DABC的一邊平行時,A′B____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖南廣益實驗即將開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計圖.

請你根據(jù)圖中信息,回答下列問題:

1)本次共調(diào)查了__________名學(xué)生;

2)根據(jù)以上統(tǒng)計分析,估計該校2000名學(xué)生中最喜愛小品的人數(shù)為__________人;

3)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準備從這4名學(xué)生中隨機抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個班級的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

b24ac0;方程ax2+bx+c=0的兩個根是x1=1x2=3;③3a+c=0;

y0時,x的取值范圍是﹣1x3;x0時,yx增大而減。

其中結(jié)論正確的個數(shù)是( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E,F是對角線B上兩點,且∠EAF45°,將ADF繞點A順時針旋轉(zhuǎn)90°后得到ABQ,連接EQ,

求證:(1EA是∠QAF的平分線;

2BDBE+QE+QB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OA=2,OB=4,以A點為頂點,AB為腰在第三象限作等腰直角ABC.

1)求C點的坐標.

2)如圖2,OA=2,Py軸負半軸上的一個動點,若以P為直角頂點,PA為腰作等腰直角APD,過DDEx軸于E點,求OPDE的值.

3)如圖3,點F坐標為(-4,-4),點G0,m)在y軸負半軸,點Hn,0)在x軸的正半軸,且FHFG,求m+n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, O ABC 的外接圓,AB 為直徑,∠BAC 的平分線交O 于點 D,過點 D DE⊥AC 分別交 AC、AB 的延長線于點 EF

1)求證:EF O 的切線;

2)若 AC=6,CE=3,求弧BD 的長度.(結(jié)果保留π

查看答案和解析>>

同步練習(xí)冊答案