如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
【小題1】求點B的坐標
【小題2】求證:四邊形ABCE是平行四邊形;
【小題3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.


【小題1】∵在△OAB中,∠OAB=90º,∠AOB=30º,OB=8,
∴OA=4,AB=4!帱cB的坐標為(4,4)!2分
【小題2】∵∠OAB=90º,∴AB⊥軸,∴AB∥EC。 又∵△OBC是等邊三角形,∴OC=OB=8。
又∵D是OB的中點,即AD是Rt△OAB斜邊上的中線,
∴AD=OD,∴∠OAD=∠AOD=30º,∴OE=4!郋C=OC-OE=4。
∴AB=EC!嗨倪呅蜛BCE是平行四邊形!6分
【小題3】設OG=,則由折疊對稱的性質,得GA=GC=8-。
在Rt△OAG中,由勾股定理,得,即,
解得,!郞G的長為1。………………………………………………………………10分

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•蘭州)如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB為邊,在△OAB外作等邊△OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.

1.求點B的坐標

2.求證:四邊形ABCE是平行四邊形;

3.如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
【小題1】求點B的坐標
【小題2】求證:四邊形ABCE是平行四邊形;
【小題3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省九年級中考模擬數(shù)學試卷(解析版) 題型:解答題

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.

1.求點B的坐標

2.求證:四邊形ABCE是平行四邊形;

3.如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

 

查看答案和解析>>

同步練習冊答案