【題目】某年級共有300名學生,為了解該年級學生A,B兩門課程的學習情況,從中隨機抽取60名學生進行測試,將他們的成績進行整理、描述和分析.下面給出了部分信息:
Ⅰ.A課程成績的頻數分布直方圖如下(數據分成6組):
Ⅱ.A課程成績在70≤x<80這一組的是:70, 71, 71,71,76,76,77,78,78, 78.5,78.5,79, 79, 79.5.
Ⅲ.A,B兩門課程成績的中位數、眾數、平均數如下表所示:
根據以上信息,回答下列問題:
(1)寫出表中m的值,m=________;
(2)在此次測試中,某學生的A課程成績?yōu)?/span>78分,B課程成績?yōu)?/span>71分,這名學生成績排名更靠前的課程是________(填“A”或“B”)
(3)假設該年級學生都參加此次測試,估計A課程成績超過該課程平均分的人數.
【答案】(1)78.5;(2)B;(3)180人
【解析】
(1)先確定A課程的中位數落在70≤x<80這一組,再由此分組具體數據得出第30、31個數據的平均數即可;
(2)根據兩個課程的中位數定義解答可得;
(3)用總人數乘以樣本中超過75.8分的人數所占比例可得.
(1)∵A課程總人數為2+6+12+14+18+8=60,
∴中位數為第30、31個數據的平均數,而第30、31個數據均在70≤x<80這一組,
∴中位數在70≤x<80這一組,
∵70≤x<80這一組的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,
∴A課程的中位數為,即m=78.75;
故答案為:78.75
(2)∵該學生的A課程成績小于A課程的中位數,而B課程成績大于B課程的中位數,
∴這名學生成績排名更靠前的課程是B,
故答案為:B
(3)估計A課程成績超過75.8分的人數為300×=180人.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF.其中正確的結論有( )個
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰三角形PAD中,PA=PD,以AB為直徑的⊙O經過點P,點C是⊙O上一點,連接AC,PC,PC交AB于點E,已知∠ACP=60°.
(1)求證:PD是⊙O的切線;
(2)連接OP,PB,BC,OC,若⊙O的直徑是4,則:
①當DE= ,四邊形APBC是矩形;
②當DE= ,四邊形OPBC是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知…是軸上的點,且…,分別過點…作軸的垂線交反比例函數的圖象于點…,過點作于點,過點作于點……記的面積為,的面積為……的面積為,則…等于_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】讀下面的題目及分析過程,并按要求進行證明。已知:如圖,E是BC的中點,點A在DB上,且
∠BAE=∠CDE,求證:AB=CD
分析:證明兩條線段相等,常用的一般方法是應用全等三角形或等腰三角形的判定和性質,觀察本題中要證明的兩條線段,它們不在同一個三角形中,且它們分別所在的兩個三角形也不全等。因此,要證明AB=CD,必須添加適當的輔助線,構造全等三角形或等腰三角形,F(xiàn)給出如下三種添加輔助線的方法,請任意選擇其中兩種對原題進行證明。
圖(1):延長DE到F使得EF=DE
圖(2):作CG⊥DE于G,BF⊥DE于F交DE的延長線于F
圖(3):過C點作CF∥AB交DE的延長線于F.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究
如圖,拋物線經過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BC,DB,DC,
(1)求拋物線的函數表達式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.
(1)求∠DAF的度數;
(2)求證:AE2=EFED;
(3)求證:AD是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數(,,為常數,且)中的與的部分對應值如下表:
以下結論:
①二次函數有最小值為;
②當時,隨的增大而增大;
③二次函數的圖象與軸只有一個交點;
④當時,.
其中正確的結論有( )個
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com