【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)D在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____.
【答案】8
【解析】
連接EC,過(guò)A作AM∥BC交FE的延長(zhǎng)線于M,求出平行四邊形ACFM,根據(jù)等底等高的三角形面積相等得出△BDE的面積和△CDE的面積相等,△ADE的面積和△AME的面積相等,推出陰影部分的面積等于平行四邊形ACFM的面積的一半,求出CF×hCF的值即可.
連接DE、EC,過(guò)A作AM∥BC交FE的延長(zhǎng)線于M,
∵四邊形CDEF是平行四邊形,
∴DE∥CF,EF∥CD,
∴AM∥DE∥CF,AC∥FM,
∴四邊形ACFM是平行四邊形,
∵△BDE邊DE上的高和△CDE的邊DE上的高相同,
∴△BDE的面積和△CDE的面積相等,
同理△ADE的面積和△AME的面積相等,
即陰影部分的面積等于平行四邊形ACFM的面積的一半,是×CF×hCF,
∵△ABC的面積是24,BC=3CF
∴BC×hBC=×3CF×hCF=24,
∴CF×hCF=16,
∴陰影部分的面積是×16=8,
故答案為:8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為A(a,0),B(b,0),a,b滿(mǎn)足方程組,C為y軸正半軸上一點(diǎn),且△ABC的面積S△ABC=6.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)坐標(biāo)系中是否存在點(diǎn)P(m,m),使S△PAB=S△ABC,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱(chēng)軸為直線,下列結(jié)論:①;②;③;④若B(, )、C(, )為函數(shù)圖象上的兩點(diǎn),則.其中正確結(jié)論是( )
A. ②④ B. ①③ C. ①④ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文化商店計(jì)劃同時(shí)購(gòu)進(jìn)A、B兩種儀器,若購(gòu)進(jìn)A種儀器2臺(tái)和B種儀器3臺(tái),共需要資金1700元;若購(gòu)進(jìn)A種儀器3臺(tái),B種儀器1臺(tái),共需要資金1500元.
(1)求A、B兩種型號(hào)的儀器每臺(tái)進(jìn)價(jià)各是多少元?
(2)已知A種儀器的售價(jià)為760元/臺(tái),B種儀器的售價(jià)為540元/臺(tái).該經(jīng)銷(xiāo)商決定在成本不超過(guò)30000元的前提下購(gòu)進(jìn)A、B兩種儀器,若B種儀器是A種儀器的3倍還多10臺(tái),那么要使總利潤(rùn)不少于21600元,該經(jīng)銷(xiāo)商有哪幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn)
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,3),B(0,1),C(2,1).若將三角形ABC向左平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度得到三角形A′B′C′.
(1)寫(xiě)出三角形A′B′C′各頂點(diǎn)的坐標(biāo);
(2)畫(huà)出三角形ABC和三角形A′B′C′;
(3)求出三角形A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.據(jù)此判斷下列等式成立的是_________(填序號(hào)).
①cos(-60°)=—cos60°=
②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°=
③sin2x=sin(x+x)=sinx·cosx+cosx·sinx=2sinx·cosx;
④sin(x-y)=sinx·cosy-cosx·siny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com