如圖,在?ABCD中,點M為CD中點,AM與BD相交于點N,如果S△DMN=1,那么S?ABCD=( )

A.12
B.9
C.8
D.6
【答案】分析:根據(jù)相似三角形△DMN∽△BAN的相似比1:2即可求得△DMN和△BAN的高之比為1:2,△DMN與□ABCD的高之比為1:3.
解答:解:∵點M為CD中點,
∴DM:DC=1:2,
∵四邊形ABCD是□ABCD,
∴DC∥AB,△DMN∽△BAN,DC=AB,
∴DM:AB=1:2,則△DMN和△BAN的高之比為1:2,△DMN與□ABCD的高之比為1:3,
∴S△DMN:S□ABCD=××=
∵S△DMN=1,那么S?ABCD=12;
故選A.
點評:本題考查了相似三角形的判定性質(zhì):
(1)相似三角形周長的比等于相似比;
(2)相似三角形面積的比等于相似比的平方;
(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案