分析 首先作出三角形的內(nèi)角平分線進(jìn)而得出得出內(nèi)切圓圓心位置,利用圓心到三角形邊的距離為半徑畫圓得出即可,然后解直角三角形即可得到結(jié)論.
解答 解解:如圖所示:⊙O即為所求:設(shè)BC與⊙O的切點(diǎn)為E,
∵△ABC是等邊三角形,
∴BE=$\frac{1}{2}$BC=$\frac{3}{2}$,∠OBE=30°,
∴OE=BE•tan30°=$\frac{\sqrt{3}}{2}$,
∴內(nèi)切圓的半徑為$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 此題主要考查了三角形內(nèi)心的作法以及復(fù)雜作圖,得出內(nèi)切圓圓心位置是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,3) | B. | (3$\sqrt{3}$,3) | C. | (3,$3\sqrt{3}$) | D. | (3$\sqrt{3}$,3$\sqrt{3}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率$\frac{m}$ | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com