精英家教網 > 初中數學 > 題目詳情

如圖,正方形ABCD的邊長為6cm,M、N分別為AD、BC邊的中點,將點C折至MN上,落在點P處,折痕BQ交MN于點E,則BE的長等于________cm.

2
分析:根據折疊的性質知:可知:BN=BP,從而可知∠BPN的值,再根據∠PBQ=∠CBQ,可將∠CBQ的角度求出,再利用三角函數求出BE的長.
解答:根據折疊的性質知:BP=BC,∠PBQ=∠CBQ,
∴BN=BC=BP,
∵∠BNP=90°,
∴∠BPN=30°,
∴∠PBN=90°-30°=60°,
根據翻折不變性,∠QBC=30°,
=cos30°,
=,
∴BE=2
點評:此題考查了翻折變換,已知折疊問題就是已知圖形的全等,根據邊之間的關系,可將∠PBQ的度數求出.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案