【題目】已知:如圖,∠1+ ∠2=180° 以∠A= ∠D.求證:AB//CD.(在每步證明過(guò)程后面注明理由)
【答案】答案見(jiàn)解析.
【解析】
根據(jù)對(duì)頂角相等和等式的性質(zhì)即可得到∠CGD+∠2=180°,根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行得到AE∥FD,根據(jù)兩直線平行,同位角相等得到∠A=∠BFD,等量代換得到∠BFD=∠D,再利用內(nèi)錯(cuò)角相等,兩直線平行即可得到結(jié)論.
∵∠1與∠CGD是對(duì)頂角,
∴∠1=∠CGD(對(duì)頂角相等).
∵∠1+∠2=180°(已知),
∴∠CGD+∠2=180°(等量代換),
∴AE∥FD(同旁內(nèi)角互補(bǔ),兩直線平行),
∴∠A=∠BFD(兩直線平行,同位角相等).
又∵∠A=∠D(已知),
∴∠BFD=∠D(等量代換),
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,C,D分別為半徑OB,弦AB的中點(diǎn),連接CD并延長(zhǎng),交過(guò)點(diǎn)A的切線于點(diǎn)E.
(1)求證:AE⊥CE.
(2)若AE=,sin∠ADE=,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,A(a,0),B(0,b),D(0,c),其中a,b,c滿足2a2+b2+c2-2ab-8a-2c+17=0,過(guò)坐標(biāo)O作直線BC交線段OA于點(diǎn)C.
(1)如圖1,當(dāng)∠ODA=∠OCB時(shí),求點(diǎn)C的坐標(biāo);
(2)如圖2,在(1)條件下,過(guò)O作OE⊥BC交AB于點(diǎn)E,過(guò)E作EF⊥AD交OA于點(diǎn)N,交BC延長(zhǎng)線于F,求證:BF=OE+EF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用“畫樹(shù)狀圖”或“列表”或“列舉”等方法給出分析過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過(guò)點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過(guò)A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十一”期間,包河區(qū)牛角大圩60畝的秋季花海是游客觀賞的首選景點(diǎn),有著獨(dú)具一格的農(nóng)業(yè)風(fēng)情,花海由矮牽牛、孔雀菊、藍(lán)花鼠尾草、一串紅等組成。為了種植“花!,需要從甲乙兩地向大圩A.B兩個(gè)大棚配送營(yíng)養(yǎng)土,已知甲地可調(diào)出50噸營(yíng)養(yǎng)土,乙地可調(diào)出80噸營(yíng)養(yǎng)土,A棚需70噸營(yíng)養(yǎng)土,B棚需60噸營(yíng)養(yǎng)土,甲乙兩地運(yùn)往A.B兩棚的運(yùn)費(fèi)如下表所示(表中運(yùn)費(fèi)欄“元/噸”表示運(yùn)送每噸營(yíng)養(yǎng)土所需人民幣).
運(yùn)費(fèi)(元/噸) | ||
A | B | |
甲地 | 12 | 12 |
乙地 | 10 | 8 |
(1)設(shè)甲地運(yùn)往棚營(yíng)養(yǎng)土噸,請(qǐng)用關(guān)于的代數(shù)式完成下表;
運(yùn)往A.B兩地的噸數(shù) | ||
A | B | |
甲地 | ||
乙地 | ___ | ___ |
(2)設(shè)甲地運(yùn)往A棚營(yíng)養(yǎng)土噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式(要求寫出自變量取值范圍).
(3)當(dāng)甲、乙兩地各運(yùn)往A.B兩棚多少噸營(yíng)養(yǎng)土?xí)r,總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC與CD的長(zhǎng)度之和為34cm,其中C是直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)你探究當(dāng)C離點(diǎn)B有多遠(yuǎn)時(shí),△ACD是以DC為斜邊的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)活動(dòng)課中,某數(shù)學(xué)小組探究求環(huán)形花壇(如圖所示)面積的方法,現(xiàn)有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直線垂直平分線段AB).
(1)在圖1中,請(qǐng)你畫出用T形尺找大圓圓心的示意圖(保留畫圖痕跡,不寫畫法);
(2)如圖2,小華說(shuō):“我只用一根直棒和一個(gè)卷尺就可以求出環(huán)形花壇的面積,具體做法如下:
將直棒放置到與小圓相切,用卷尺量出此時(shí)直棒與大圓兩交點(diǎn)M,N之間的距離,就可求出環(huán)形花壇的面積”如果測(cè)得MN=10m,請(qǐng)你求出這個(gè)環(huán)形花壇的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長(zhǎng);
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com