分析 (1)直接利用全等三角形的判定方法得出△ABE≌△DCF(SAS),進(jìn)而求出BE=FC,BE∥FC,即可得出答案;
(2)直接利用菱形的性質(zhì)得出△EBC是等邊三角形,進(jìn)而得出答案.
解答 (1)證明:在△ABE和△DCF中,
$\left\{\begin{array}{l}{AB=DC}\\{∠A=∠D}\\{AE=DF}\end{array}\right.$,
∴△ABE≌△DCF(SAS),
∴BE=FC,∠ABE=∠DCF,
∴∠EBC=∠FCB,
∴BE∥FC,
∴四邊形BFCE是平行四邊形;
(2)解:當(dāng)四邊形BFCE是菱形,
則BE=EC,
∵AD=7cm,DC=2cm,AB=DC,
∴BC=3cm,
∵∠EBD=60°,EB=EC,
∴△EBC是等邊三角形,
∴BE=3cm.
故答案為:3.
點評 此題主要考查了全等三角形的判定與性質(zhì)以及菱形的性質(zhì),正確掌握菱形的性質(zhì)是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a3+a4=a7 | B. | (3a+b)2=9a2+b2 | C. | (-ab3)2=a2b6 | D. | a6b÷a2=a3b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com