【題目】已知二次函數(shù).
(1)求證這個二次函數(shù)的圖像一定與x軸有交點;
(2)若這個二次函數(shù)有最大值0,求m的值;
(3)我們定義:若二次函數(shù)的圖像與x軸正半軸的兩個交點的橫坐標,滿足2<<3,則稱這個二次函數(shù)與x軸有兩個“黃金交點”.如果二次函數(shù)與x軸有兩個“黃金交點”,求m的取值范圍.
【答案】(1)圖像與x軸有交點;(2)m=-1;(3)或
【解析】
(1)當b2-4ac>0,圖象與x軸有兩個交點;當b2-4ac=0,圖象與x軸有一個交點;當b2-4ac<0,圖象與x軸沒有交點.
(2)二次函數(shù)有最大值,說明拋物線開口向下;二次函數(shù)有最大值0,說明拋物線與x軸只有一個交點,即可求解.
(3)拋物線與x軸的交點縱坐標都等于0,根據(jù),解得:x1=1,x2=,最后分情況討論即可.
(1)∵b2-4ac=(m+1)2≥0
∴圖像與x軸有交點
(2)∵二次函數(shù)有最大值
∴m0
∵二次函數(shù)有最大值0
∴b2-4ac=(m+1)2=0
∴m=-1
(3)解方程
得:x1=1,x2= 可得m0
① 解得:
② 解得:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是正△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=.其中正確的結論是( 。
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場按定價銷售某種商品時,每件可獲利100元;按定價的八折銷售該商品5件與將定價降低50元銷售該商品6件所獲利潤相等.
(1)該商品進價、定價分別是多少?
(2)該商場用10000元的總金額購進該商品,并在五一節(jié)期間以定價的七折優(yōu)惠全部售出,在每售出一件該商品時,均捐獻元給社會福利事業(yè),該商場為能獲得不低于3000元的利潤,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A、B、C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結果精確到0.1m).參考數(shù)據(jù):sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,AB=CD,點E、F在BC上,且BE=CF.
(1)求證:△ABE≌△DCF;
(2)試證明:以A、F、D、E為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,過點B作BD⊥AC于點D,BE平分∠ABD交AC于點E.
(1)求證:CB=CE;
(2)若∠CEB=80°,求∠DBC的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC、BD交于點O,點E是BC上一點,且AB=BE,∠1=15°,則∠2的度數(shù)是( )
A.25°B.30°C.35°D.15°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①為了了解一批燈泡的使用壽命,應采用全面調查的方式
②一組數(shù)據(jù)5,6,7,6, 8,10的眾數(shù)和中位數(shù)都是6
③已知關于x的一元二次方程(x+1)2﹣m=0有兩個實數(shù)根,則m的取值范圍是m≥0
④式子有意義的條件是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠BAD=60°,點E是AD上一動點(不與A、D重合),點F是CD上一動點,AE+CF=4,則△BEF面積的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com