【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結(jié)AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結(jié)EF.

(1)當(dāng)CM:CB=1:4時,求CF的長.

(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.

(3)當(dāng)△ABM∽△EFN時,求CM的長.

【答案】(1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣

【解析】

(1)如圖1中,作AHBCH.首先證明四邊形AHCD是正方形,求出BCMC的長,利用平行線分線段成比例定理即可解決問題;

(2)在RtAEH中,AE2=AH2+EH2=12+(1+y2,由△EAM∽△EBA,可得,推出AE2=EMEB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;

(3)如圖2中,作AHBCH,連接MN,在HB上取一點G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;

解:(1)如圖1中,作AH⊥BCH.

∵CD⊥BC,AD∥BC,

∴∠BCD=∠D=∠AHC=90°,

四邊形AHCD是矩形,

∵AD=DC=1,

四邊形AHCD是正方形,

∴AH=CH=CD=1,

∵∠B=45°,

∴AH=BH=1,BC=2,

∵CM=BC=,CM∥AD,

=

=,

∴CF=1.

(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,

∵∠AEM=∠AEB,∠EAM=∠B,

∴△EAM∽△EBA,

=,

∴AE2=EMEB,

∴1+(1+y)2=(x+y)(y+2),

∴y=,

∵2﹣2x≥0,

∴0≤x≤1.

(3)如圖2中,作AH⊥BCH,連接MN,在HB上取一點G,使得HG=DN,連接AG.

△ADN≌△AHG,△MAN≌△MAG,

∴MN=MG=HM+GH=HM+DN,

∵△ABM∽△EFN,

∴∠EFN=∠B=45°,

∴CF=CE,

四邊形AHCD是正方形,

∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,

∴△AHE≌△ADF,

∴∠AEH=∠AFD,

∵∠AEH=∠DAN,∠AFD=∠HAM,

∴∠HAM=∠DAN,

∴△ADN≌△AHM,

∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,

∴x+x=1,

∴x=﹣1,

∴CM=2﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形中,的中點,連接,連接,過的延長線于,則的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+4x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點POA上一動點,當(dāng)PC+PD的值最小時,點P的坐標(biāo)為( 。

A.(﹣1,0B.(﹣20C.(﹣3,0D.(﹣4,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A1,1),B4,2),C3,4).

1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;

2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;并寫出點A2、B2、C2坐標(biāo);

3)請畫出△ABCO逆時針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點A3B3、C3坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛高鐵與一輛動車組列車在長為1320千米的京滬高速鐵路上運行,已知高鐵列車比動車組列車平均速度每小時快99千米,且高鐵列車比動車組列車全程運行時間少3小時,求這輛高鐵列車全程運行的時間和平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.

(1)甲,乙兩公司單獨完成此項工程,各需多少天?

(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的坐標(biāo)為,軸,垂足為,軸,垂足為,點分別是射線、上的動點,且點不與點重合,.

1)如圖1,當(dāng)點在線段上時,求的周長;

2)如圖2,當(dāng)點在線段的延長線上時,設(shè)的面積為,的面積為,請猜想之間的等量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗,當(dāng)車座ECB的距離調(diào)整至等于人體胯高(腿長)的0.85時,坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊中,的中點,點的延長線上,點上,.,則的值為___________.

查看答案和解析>>

同步練習(xí)冊答案