【題目】已知:矩形ABCD中,對角線AC與BD交于點(diǎn)O,∠BOC=120°,AC=4cm,求矩形ABCD的周長.

【答案】解:∵四邊形ABCD是矩形,
∴AB=DC,AD=BC,∠ABC=90°,OA=OB=AC=2cm,
∵∠BOC=120°,
∴∠AOB=60°,
∴△AOB是等邊三角形,
∴AB=OA=2cm,
∴AD=BC===2(cm),
∴矩形ABCD的周長=2(AB+BC)=4+4(cm).
【解析】由矩形的性質(zhì)得出AB=DC,AD=BC,∠ABC=90°,OA=OB=AC,證明△AOB是等邊三角形,得出AB=OA=2cm,再由勾股定理求出BC,即可得出矩形ABCD的周長.
【考點(diǎn)精析】掌握矩形的性質(zhì)是解答本題的根本,需要知道矩形的四個(gè)角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)EAD的中點(diǎn),∠EBC的平分線交CD于點(diǎn)F,將△DEF沿EF折疊,點(diǎn)D恰好落在BEM點(diǎn)處,延長BCEF交于點(diǎn)N.有下列四個(gè)結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④SBEF=3SDEF.其中,將正確結(jié)論的序號全部選對的是( )

A. ①②③

B. ①②④

C. ②③④

D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)相似三角形對應(yīng)邊之比是14,那么它們的對應(yīng)高線之比是( 。

A.14B.16C.18D.116

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O , 已知下列6個(gè)條件:①ABDC;②ABDC;③ACBD;④∠ABC=90°;⑤OAOC;⑥OBOD;則不能使四邊形ABCD成為矩形的是( 。.

A.①②③
B.②③④
C.②⑤⑥
D.④⑤⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,今年220日舉行了襄陽市首屆中小學(xué)生經(jīng)典誦讀大賽決賽. 某中學(xué)為了選拔優(yōu)秀學(xué)生參加,廣泛開展校級經(jīng)典誦讀比賽活動(dòng),比賽成績評定為AB,C,D,E五個(gè)等級,該校七(1)班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息,解答下列問題:

(1)該校七(1)班共有   名學(xué)生;扇形統(tǒng)計(jì)圖中C等級所對應(yīng)扇形的圓心角等于  度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)A等級的4名學(xué)生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學(xué)校培訓(xùn)班,請用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麒麟?yún)^(qū)第七中學(xué)現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計(jì)劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m.
(1)求出空地ABCD的面積?
(2)若每種植1平方米草皮需要300元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若 ,其中a,b,c代表非零數(shù)字,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的邊長為6,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(2,0)在OA上,P是OB上一動(dòng)點(diǎn),則PA+PD的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)是(﹣2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點(diǎn)D,過點(diǎn)A作直線AE⊥BD,垂足為E,交OC于點(diǎn)F.

(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長;
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案