(2002•麗水)如圖,在△ABC中,AB=3,AC=2,∠A=30°,則△ABC的面積等于( )

A.
B.
C.
D.3
【答案】分析:作CD⊥BA于D,在Rt△ACD中運用三角函數(shù)求CD的長,再運用三角形面積公式計算.
解答:解:如圖,過C作CD⊥BA于D,
那么CD就是△ABC的高,
在Rt△ACD中,∠A=30°,AC=2,
∴CD=AC•sinA=1,
S△ABC=AB•CD÷2=
故選B.
點評:本題考查了直角三角形的應(yīng)用,本題中通過作輔助線構(gòu)建直角三角形,然后通過邊角關(guān)系求出高是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過點P(5,3),且分別與已知直線y2=3x交于點A、與x軸交于點B.設(shè)點A的橫坐標(biāo)為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點A,使得△AOB面積最?若存在,請求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•麗水)如圖,直線y1=kx+b經(jīng)過點P(5,3),且分別與已知直線y2=3x交于點A、與x軸交于點B.設(shè)點A的橫坐標(biāo)為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線y2=3x上是否存在點A,使得△AOB面積最。咳舸嬖,請求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:選擇題

(2002•麗水)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,CD=2,BD=1,則AD的長是( )

A.1
B.
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(08)(解析版) 題型:填空題

(2002•麗水)如圖,PT是半徑為4的⊙O的一條切線,切點為T,PBA是經(jīng)過圓心的一條割線,若B是OP的中點,則PT的長是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省麗水市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•麗水)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,CD=2,BD=1,則AD的長是( )

A.1
B.
C.2
D.4

查看答案和解析>>

同步練習(xí)冊答案