20.如圖,△ABC是等邊三角形,D、E分別為BC、AC上一點(diǎn),且BD=CE,AD交BE于F.
(1)求證:AD=BE;
(2)若∠CFE=30°,求$\frac{BD}{CD}$的值.

分析 (1)根據(jù)等邊三角形性質(zhì)得出AB=BC,∠ABD=∠C=60°,再根據(jù)SAS可得△ABD≌△BCE,根據(jù)全等三角形的性質(zhì)得到結(jié)論;
(2)由△ABD≌△BCE,可證得∠BAD=∠CBE,進(jìn)一步得到∠EAF=∠ABE,然后根據(jù)有兩角對(duì)應(yīng)相等的三角形相似,即可得△AEF∽△ABE.

解答 解:(1)∵△ABC為等邊三角形,
∴AB=BC,∠ABD=∠C=60°,
在△ABD和△BCE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠C}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△BCE(SAS),
∴AD=BE;
(2)如圖,連接DE,

由(1)得:∠1=∠2,
∴∠AFE=∠1+∠3=∠2+∠3=60°,
∵∠ACD=60°,
∴∠AFE=∠ACD,
∵∠FAE=∠CAD,
∴∵△AFE∽△ACD,
∴$\frac{AF}{AC}=\frac{AE}{AD}$,
∴$\frac{AF}{AE}=\frac{AC}{AD}$,
∵∠FAC=∠EAD,
∴△FAC∽△EAD,
∴∠AFC=∠AED,
∵∠AFC=∠AFE+∠CFE=60°+30°=90°,
∴∠AED=90°,
∴CED=90°,
∵∠DCE=60°,
∴∠CDE=30°,
∴CE=$\frac{1}{2}$CD,
∵BD=CE,
∴BD=$\frac{1}{2}$CD,
∴$\frac{BD}{CD}=\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)等邊三角形的性質(zhì):等邊三角形的三個(gè)內(nèi)角都相等,且都等于60°;三條邊相等分析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,正方形ABCD的邊長(zhǎng)為6cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過(guò)點(diǎn)M作直線分別與AD、BC相交于點(diǎn)P、Q.若PQ=AE,則AP等于2或4cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.-5x2y2+3x2y+2x-5是四次四項(xiàng)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知一次函數(shù)y1=2x-3與y2=-x+4的圖象相交于點(diǎn)P,它們與y軸交于A、B兩點(diǎn).
(1)求△ABP的面積;
(2)根據(jù)圖象指出:x為何值時(shí),y1>y2?當(dāng)x為何值時(shí),y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.“囧”像一個(gè)人臉郁悶的神情.如圖,邊長(zhǎng)為a的正方形紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)“囧”字圖案(陰影部分),設(shè)剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)分別為x、y,剪去的小長(zhǎng)方形長(zhǎng)和寬也分別為x,y.
(1)用式子表示“囧”的面積S;(用含a、x、y的式子表示)
(2)當(dāng)a=7,x=π,y=2時(shí),求S(π取3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某中學(xué)開(kāi)展以“校園文明”為主題的手抄報(bào)比賽,同學(xué)們積極參與,參賽同學(xué)每人交了一份得意作品,所有參賽作品均獲獎(jiǎng).獎(jiǎng)項(xiàng)分別為一等獎(jiǎng),二等獎(jiǎng),三等獎(jiǎng)和優(yōu)秀獎(jiǎng).將獲獎(jiǎng)結(jié)果繪制成如圖兩幅統(tǒng)計(jì)圖.

(1)扇形統(tǒng)計(jì)圖一等獎(jiǎng)所占的百分比是多少?把條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽共收到多少份參賽作品?
(3)各獎(jiǎng)項(xiàng)分別有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.老師在黑板上書(shū)寫(xiě)了一個(gè)正確的演算過(guò)程,隨后用手掌捂住了一個(gè)多項(xiàng)式,形式如下:
+(-3x2+5x-7)=-2x2+3x-6
(1)求所捂的多項(xiàng)式;
(2)若x是$\frac{1}{4}$x=-$\frac{1}{2}$x+3的解,求所捂多項(xiàng)式的值;
(3)若x為正整數(shù),任取x幾個(gè)值并求出所捂多項(xiàng)式的值,你能發(fā)現(xiàn)什么規(guī)律?
(4)若所捂多項(xiàng)式的值為144,請(qǐng)直接寫(xiě)出x的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.計(jì)算:
(1)(-$\sqrt{3}$)2-2$\sqrt{18}$+(1+$\sqrt{2}$)2010($\sqrt{2}$-1)2011+|1-$\sqrt{2}$|+($\sqrt{5}+π$)0
(2)(2x-7y)(3x+4y-1)
(3)(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{201{5}^{2}}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在正方形ABCD中,E為BC邊上的點(diǎn)(不與B,C重合),F(xiàn)為CD邊上的點(diǎn)(不與C,D重合),且AE=AF,AB=4,設(shè)△AEF的面積為y,EC的長(zhǎng)為x,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案