【題目】已知矩形紙片ABCD中,AB=2,BC=3.

操作:將矩形紙片沿EF折疊,使點B落在邊CD上.

探究:⑴如圖1,若點B與點D重合,你認為全等嗎?如果全等,請給出證明,如果不全等,請說明理由;

⑵如圖2,若點BCD的中點重合,請你判斷之間的關(guān)系,如果全等,只需寫出結(jié)果,如果相似,請寫出結(jié)果和相應的相似比;

⑶如圖2,請你探索,當點B落在CD邊上何處,即的長度為多少時,全等.

【答案】(1)全等,理由見解析;(2)△B1DGEA1G全等,FCB1B1DG相似,相似比為4:3;(3)B1C=3,FCB1B1DG全等.

【解析】

(1)由四邊形ABCD是矩形,可得∠A=B=C=ADC=90°,AB=CD,由折疊的性質(zhì)可得:∠A=A1B=A1DF=90°,CD=A1D,然后利用同角的余角相等,可證得∠A1DE=CDF,則可利用ASA證得EDA1FDC全等;

(2)易得B1DGEA1G全等,FCB1B1DG相似,然后設(shè)FC=x,由勾股定理可得方程x2+12=(3-x)2,解此方程即可求得答案;

(3)設(shè)B1C=a,則有FC=B1D=2-a,B1F=BF=1+a,在直角FCB1中,可得(1+a)2=(2-a)2+a2,解此方程即可求得答案.

(1)全等,

證明:∵四邊形ABCD是矩形,

∴∠A=B=C=ADC=90,AB=CD,

由題意知:∠A=A1,B=A1DF=90,CD=A1D,

∴∠A1=C=90,CDF+EDF=90,

∴∠A1DE=CDF,

EDA1FDC中,

,

EDA1FDC(ASA);

(2)B1DGEA1G全等,FCB1B1DG相似,

設(shè)FC=x,則B1F=BF=3x,B1C=DC=1,

x2+12=(3x)2,

x=,

FCB1B1DG相似,相似比為4:3.

(3)FCB1B1DG全等,

設(shè)B1C=a,則有FC=B1D=2a,B1F=BF=1+a,

在直角FCB1,可得(1+a)2=(2a)2+a2,

整理得a26a+3=0,

解得:a=3 (另一解舍去),

∴當B1C=3,FCB1B1DG全等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小李制作了一張ABC紙片,點D、E分別在邊AB、AC上,現(xiàn)將ABC沿著DE折疊壓平,使點A落在點A′位置.若A=75°,則1+2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架5米長的梯子AB斜靠在一面墻上,梯子底端B到墻底的垂直距離BC3米.

(1)求這個梯子的頂端A到地面的距離AC的值;

(2)如果梯子的頂端A沿墻AC豎直下滑1米到點D處,求梯子的底端B在水平方向滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=9,AC=6,BC=12,點MAB邊上,且AM=3,過點M作直線MNAC邊交于點N,使截得的三角形與原三角形相似,則MN=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王老師想給李老師打電話,但忘了電話號碼中的最后兩個數(shù)字,只記得號碼是:1 3 9 0 7 9 7 8 9○□(○,□表示忘記的最后兩個數(shù)字).王老師還記得○與□都是大于3的偶數(shù).

(1)用列舉法表示○□所有的可能情況;

(2)若后兩位數(shù)字相同,王老師一次拔對李老師電話號碼的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBC,ABBC,過點B作直線l,過點AAE⊥l于E,過點CCFlF,則下列說法中正確的是(  )

A.ACAE+BEB.EFAE+EBC.ACEB+CFD.EFEB+CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點DBC的中點.

(1)如圖①,若點E、F分別為AB、AC上的點,且DEDF,求證:BE=AF;

(2)若點E、F分別為AB、CA延長線上的點,且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC90°,AB4,BC3CD12,AD13.求四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案