【題目】在每個(gè)小正方形的邊長(zhǎng)為 的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).從一個(gè)格點(diǎn)移動(dòng)到與之相距 的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱為一次跳馬變換.例如,在 的正方形網(wǎng)格圖形中(如圖1),從點(diǎn) 經(jīng)過一次跳馬變換可以到達(dá)點(diǎn) , 等處.現(xiàn)有 的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn) 經(jīng)過跳馬變換到達(dá)與其相對(duì)的頂點(diǎn) ,最少需要跳馬變換的次數(shù)是( )

A.
B.
C.
D.

【答案】B
【解析】解:由圖一可知,沿AC或AD可進(jìn)行下去,然后到CF,從而求出AF=3 ,此時(shí)可知跳過了3格,然后依次進(jìn)行下去;而20×20的網(wǎng)格中共有21條線,所以要進(jìn)行下去,正好是(20+1)÷3×2=14.
所以答案是B.
【考點(diǎn)精析】本題主要考查了勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,若動(dòng)點(diǎn)P從點(diǎn)C開始,按的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

出發(fā)2秒后,求的面積;

當(dāng)t為幾秒時(shí),BP平分;

t為何值時(shí),為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時(shí)路程與時(shí)間的函數(shù)圖象,問

(1)在剛出發(fā)時(shí)我公安快艇距走私船多少海里?

(2)計(jì)算走私船與公安快艇的速度分別是多少?

(3)寫出L1,L2的解析式

(4)問6分鐘時(shí)兩艇相距幾海里.

(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,AC=6,BC=8,ADBAC的平分線.若P,Q分別是ADAC上的動(dòng)點(diǎn),則PC+PQ的最小值是(

A. B. 4 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在 中, , ,點(diǎn) 的重心,則點(diǎn) 所在直線的距離等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)3(20-y)=6y-4(y-11);

(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AD ABC BC 邊上的中線, AB 3 , AD 4 , AC 的取值范圍是( )

A. 1 AC 7 B. 0.5 AC 3.5 C. 5 AC 11 D. 2.5 AC 5.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)粒子在第一象限內(nèi)及x軸、y軸上運(yùn)動(dòng),在第一分鐘,它從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,0),第二分鐘,它從點(diǎn)(1,0)運(yùn)動(dòng)到點(diǎn)(1,1),而后它接著按圖中箭頭所示在與x軸,y軸平行的方向上來回運(yùn)動(dòng),且每分鐘移動(dòng)1個(gè)單位長(zhǎng)度,那么在第2019分鐘時(shí),這個(gè)粒子所在位置的坐標(biāo)是( )

A. (44,5) B. (5,44) C. (44,6) D. (6,44)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)把△ABC向下平移2個(gè)單位長(zhǎng)度得到△A1B1C1,請(qǐng)畫出△A1B1C1

(2)請(qǐng)畫出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2,并寫出A2的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案