分析 分別從當(dāng)PA=PD,PA=AD,AD=PD時,△PAD是等腰三角形討論,然后由等腰三角形的性質(zhì)與射影定理即可求得答案.
解答 解:①當(dāng)PA=PD時,
此時P位于四邊形ABCD的中心,
過點P作PE⊥AD于E,作PM⊥AB于M,
則四邊形EAMP是正方形,
∴PM=PE=$\frac{1}{2}$AB=2,
∵PM2=AM•BM=4,
∵AM+BM=4,
∴AM=2,
∴PA=2$\sqrt{2}$,
②當(dāng)PA=AD時,PA=4(舍);
③當(dāng)PD=DA時,以點D為圓心,DA為半徑作圓與弧AB的交點為點P.
連PD,令A(yù)B中點為O,再連DO,PO,DO交AP于點G,
則△ADO≌△PDO,
∴DO⊥AP,AG=PG,
∴AP=2AG,
又∵DA=2AO,
∴AG=2OG,
設(shè)AG為2x,OG為x,
∴(2x)2+x2=4,
∴x=$\frac{2\sqrt{5}}{5}$,
∴AG=2x=$\frac{4\sqrt{5}}{5}$,
∴PA=2AG=$\frac{8\sqrt{5}}{5}$;
∴PA=2$\sqrt{2}$或4或$\frac{8\sqrt{5}}{5}$,
故答案為:2$\sqrt{2}$或$\frac{8\sqrt{5}}{5}$.
點評 此題考查了正方形的性質(zhì),圓周角的性質(zhì)以及勾股定理等知識.此題綜合性很強(qiáng),解題時要注意數(shù)形結(jié)合與方程思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com