等腰△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,則∠A=
100°
100°
分析:由在△ABC中,AB=AC,根據(jù)等邊對等角,可得∠ABC=∠C,又由BD平分∠ABC,∠BDC=120°,可求得∠1的度數(shù),然后根據(jù)三角形內(nèi)角和定理,即可求得∠A的度數(shù).
解答:解:∵BD平分∠ABC,
∴∠1=∠2=
1
2
∠ABC,
又∵AB=AC,
∴∠C=∠ABC,
∴∠C=2∠1,
而∠2+∠C=180°-∠BDC,且∠BDC=120°,
∴3∠1=60°,
即∠1=∠2=20°,
又∵∠BDC=∠A+∠1,
∴∠A=∠BDC-∠1=120°-20°=100°.
故答案為:100°.
點(diǎn)評:此題考查了等腰三角形的性質(zhì)、角平分線的定義、三角形的外角性質(zhì)以及三角形內(nèi)角和定理.此題難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、等腰△ABC中,AB=AC,D為BC上的一動點(diǎn),DE∥AC,DF∥AB,分別交AB于E,AC于F,則DE+DF是否隨D點(diǎn)變化而變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐南區(qū)一模)在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值=
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D點(diǎn)作DF⊥AC于F,有下列結(jié)論:
①DE=DC;②DF為⊙O的切線;③劣弧DB=劣弧DE;④AE=2EF
其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC,∠A=50°,邊AB的垂直平分線交邊AC于點(diǎn)E,則∠EBC=
15
15
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,O為AB上一點(diǎn),以O(shè)為圓心,OB長為半徑的圓交BC于D,DE⊥AC交AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若⊙O與AC相切于點(diǎn)F,⊙O的半徑為2cm,AB=AC=6cm,求∠A的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案