【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并成為三大數(shù)學(xué)王子.
阿拉伯Al﹣Binmi的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M是 的中點(diǎn),
∴MA=MC.
…
任務(wù):
(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知等邊△ABC內(nèi)接于⊙O,AB=2,D為上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長(zhǎng)是 .
【答案】(1)詳見解析;(2)2+2.
【解析】
試題分析:(1)首先證明△MBA≌△MGC(SAS),進(jìn)而得出MB=MG,再利用等腰三角形的性質(zhì)得出BD=GD,即可得出答案;(2)首先證明△ABF≌ACD(SAS),進(jìn)而得出AF=AD,以及CD+DE=BE,進(jìn)而求出DE的長(zhǎng)即可得出答案.
試題解析:(1)證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M是的中點(diǎn),
∴MA=MC.
在△MBA和△MGC中
∵ ,
∴△MBA≌△MGC(SAS),
∴MB=MG,
又∵MD⊥BC,
∴BD=GD,
∴DC=GC+GD=AB+BD;
(2)解:如圖3,截取BF=CD,連接AF,AD,CD,
由題意可得:AB=AC,∠ABF=∠ACD,
在△ABF和△ACD中
∵,
∴△ABF≌ACD(SAS),
∴AF=AD,
∵AE⊥BD,
∴FE=DE,則CD+DE=BE,
∵∠ABD=45°,
∴BE==,
則△BDC的周長(zhǎng)是2+2 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)試說明:OB∥AC;
(2)如圖②,若點(diǎn)E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.試求∠EOC的度數(shù);
(3)在(2)的條件下,若左右平行移動(dòng)AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個(gè)比值;
(4)在(3)的條件下,當(dāng)∠OEB=∠OCA時(shí),試求∠OCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了解工人加工某工件的情況,隨機(jī)抽取了部分工人一天加工該工件的個(gè)數(shù)進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)如表所示,則被抽取的工人一天加工該工件的中位數(shù)和眾數(shù)分別是( )
一天加工該工件的個(gè)數(shù)(個(gè)) | 70 | 80 | 90 | 100 | 110 |
工人人數(shù) | 4 | 11 | 10 | 8 | 7 |
A.90,80B.90,90C.95,90D.95,80
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.
(1)將△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到△BEC,請(qǐng)你畫出△BEC.
(2)連接PE,求證:△PEC是直角三角形;
(3)填空:∠APB的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì).只要善于觀察、樂于探索,我們還會(huì)發(fā)現(xiàn)更多的結(jié)論.
(1)四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)三角形(如圖①),其中相對(duì)的兩對(duì)三角形的面積之積相等.你能證明這個(gè)結(jié)論嗎?試試看.
已知:在四邊形ABCD中, O是對(duì)角線BD上任意一點(diǎn).(如圖①)求證:S△OBCS△OAD=S△OABS△OCD;
(2)在三角形中(如圖②),你能否歸納出類似的結(jié)論?若能,寫出你猜想的結(jié)論,并證明:若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計(jì)算正確的是( )
A.(a+b)2=a2+b2
B.x2x3=x6
C.x2+x3=x5
D.(a3)3=a9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com