【題目】如下幾個(gè)圖形是五角星和它的變形.
(1)圖甲是一個(gè)五角星 ABCDE,則∠A+∠B+∠C+∠D+∠E 的度數(shù)為 ;(不必 寫(xiě)過(guò)程)
(2)如圖乙,如果點(diǎn) B 向右移動(dòng)到 AC 上時(shí),則∠A+∠EBD+∠C+∠D+∠E 度數(shù)為 ;(不必寫(xiě)過(guò)程)
(3)如圖丙,點(diǎn) B 向右移動(dòng)到 AC 的另一側(cè)時(shí),(1)的結(jié)論成立嗎?為什么?
(4)如圖丁,點(diǎn) B,E 移動(dòng)到∠CAD 的內(nèi)部時(shí),結(jié)論又如何?(不必寫(xiě)過(guò)程)
【答案】(1)180°;(2)180°;(3)成立;(4)∠A+∠B+∠C+∠D+∠E=180°..
【解析】
(1)由三角形的外角性質(zhì),∠A+∠C=∠1,∠B+∠D=∠2;(2)由三角形的外角性質(zhì),由∠A+∠D=∠1,得∠1+∠DBE+∠C+∠E=180°;(3)由三角形的外角性質(zhì),∠A+∠C=∠1,∠B+∠D=∠2,根據(jù)三角形內(nèi)角和定理可得;(4)延長(zhǎng)CE與AD相交,由三角形的外角性質(zhì),∠A+∠C=∠1,∠B+∠E=∠2,根據(jù)三角形內(nèi)角和定理可得.
(1)如圖,由三角形的外角性質(zhì),∠A+∠C=∠1,∠B+∠D=∠2,
∵∠1+∠2+∠E=180°,
∴∠A+∠B+∠C+∠D+∠E=180°;
(2)如圖,由三角形的外角性質(zhì),∠A+∠D=∠1,
∵∠1+∠DBE+∠C+∠E=180°,
∴∠A+∠DBE+∠C+∠D+∠E=180°;
(3)如圖,由三角形的外角性質(zhì),∠A+∠C=∠1,∠B+∠D=∠2,
∵∠1+∠2+∠E=180°,
∴∠A+∠B+∠C+∠D+∠E=180°;
(4)如圖,延長(zhǎng)CE與AD相交,由三角形的外角性質(zhì),∠A+∠C=∠1,∠B+∠E=∠2,
∵∠1+∠2+∠D=180°,
∴∠A+∠B+∠C+∠D+∠E=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)9x2-100=0 (2)x(x-1)=2(x-1)
(3)(x+2)(x+3)=20 (4)3x2-4x-1=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,是平分線(xiàn),的垂直平分線(xiàn)分別交延長(zhǎng)線(xiàn)于點(diǎn).求證:.
證明:∵平分
∴ (角平分線(xiàn)的定義)
∵垂直平分
∴ (線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)距離相等)
∴( )
∴(等量代換)
∴( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一自動(dòng)噴灌設(shè)備的噴流情況如圖所示,設(shè)水管OA在高出地面1.5米的A處有一自動(dòng)旋轉(zhuǎn)的噴水頭,一瞬間流出的水流是拋物線(xiàn)狀,噴頭A與水流最高點(diǎn)B連線(xiàn)與y軸成45°角,水流最高點(diǎn)B比噴頭A高2米.
(1)求水流落地點(diǎn)C到O點(diǎn)的距離;
(2)若水流的水平位移s(米)(拋物線(xiàn)上兩對(duì)稱(chēng)點(diǎn)之間的距離)與水流的運(yùn)動(dòng)時(shí)間(t秒)之間的函數(shù)關(guān)系為t= 0.8s,求共有幾秒鐘,水流高度不低于2米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新合作超市最近進(jìn)了一批玩具,進(jìn)價(jià)每個(gè)15元,今天共賣(mài)山20個(gè),實(shí)際賣(mài)出的價(jià)格以每個(gè)18元為標(biāo)準(zhǔn),超過(guò)的記為正,不足的記為負(fù),記錄如下:
實(shí)際每個(gè)售出價(jià)格與標(biāo)準(zhǔn)的差值(單位:元) | +3 | -1 | +2 | +1 |
個(gè)數(shù) | 5 | 4 | 6 | 5 |
(1)這個(gè)超市今天賣(mài)出玩具的平均價(jià)格是多少?
(2)這個(gè)超市今天賣(mài)出的玩具賺了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=.求CD的長(zhǎng)和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的半徑為5cm,AB,CD是⊙O的兩條弦,AB‖CD,AB=8,CD=6,AB和CD之間的距離是___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB=90°,DB=DC,點(diǎn)E、F分別為DB、BC的中點(diǎn),連接AE、EF、AF.
(1)求證:AE=EF;
(2)當(dāng)AF=AE時(shí),設(shè)∠ADB=α,∠CDB=β,求α,β之間的數(shù)量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E、F是對(duì)角線(xiàn)BD上的兩點(diǎn),且BE=DF.
(1)求證:四邊形AECF是平行四邊形.
(2)如果四邊形ABCD是菱形,求證:四邊形AECF也是菱形.
(3)如果四邊形ABCD是矩形,請(qǐng)判斷四邊形AECF的形狀,不必寫(xiě)出證明過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com