【題目】請從以下兩個小題中任選一個作答,若多選,則按第一題計分.
A.一個正n邊形(n>4)的內角和是外角和的3倍,則n=;
B.小明站在教學樓前50米處,測得教學樓頂部的仰角為20°,測角儀的高度為1.5米,則此教學樓的高度為米.(用科學計算器計算,結果精確到0.1米)

【答案】8;19.7
【解析】解:A、根據(jù)題意得:(n﹣2)×180°=3×360°,

解得:n=8;

所以答案是:8;

B、如圖所示:

作圖可得:AB=50米;∠CAB=20°,故CB=AB×tan20°≈18.2米,

∵AD=BF=1.5米,

∴這個建筑的高度AF=19.7米.

【考點精析】通過靈活運用關于仰角俯角問題,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.

1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。

2)如圖2,已知AB不平行CDAD、BC分別是∠BAP和∠ABM的角平分線,又DECE分別是∠ADC和∠BCD的角平分線,點AB在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.

3)如圖3,延長BAG,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于EF,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形DEF是三角形ABC平移所得,觀察圖形:(1)點A的對應點是點 ,點B的對應點是點 ,點C的對應點是點 ;(2)線段AD,BE,CF叫做對應點間的連線,這三條線段之間有什么關系呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.

求證:(1)∠ECD=∠EDC;

(2)OC=OD;

(3)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,點A為 中點,BD為直徑,過A作AP∥BC交DB的延長線于點P.

(1)求證:PA是⊙O的切線;
(2)若 ,AB=6,求sin∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下框中的題目.

小明與同桌小聰討論后,進行了如下解答:

1)特殊情況,探索結論

當點EAB的中點時,如圖1,確定線段AEDB的大小關系,請你直接寫出結論:AE______DB(填,“=”).

2)一般情況,證明結論:

如圖2,過點EEFBC,交AC于點F.(請你繼續(xù)完成對以上問題(1)中所填寫結論的證明)

3)拓展結論,設計新題:

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC 若△ABC的邊長為1,AE=2,則CD的長為_______(請直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多好佳水果店在批發(fā)市場購買某種水果銷售,第一次用1500元購進若干千克,并以每千克9元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進價比第一次提高了10%,用1694元所購買的水果比第一次多20千克,以每千克10元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價45%售完剩余的水果.

(1)第一次水果的進價是每千克多少元?

(2)該水果店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

同步練習冊答案