如圖,在平面直角坐標(biāo)中,直線l經(jīng)過原點,且與y軸正半軸所夾的銳角為60°,過點A(0,1)作y軸的垂線l于點B,過點B1作作直線l的垂線交y軸于點A1,以A1B.BA為鄰邊作ABA1C1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2,以A2B1.B1A1為鄰邊作A1B1A2C2;…;按此作法繼續(xù)下去,則Cn的坐標(biāo)是    

 

 

【答案】

【解析】

試題分析:∵直線l經(jīng)過原點,且與y軸正半軸所夾的銳角為60°,∴直線l的解析式為y=x。

∵AB⊥y軸,點A(0,1),∴可設(shè)B點坐標(biāo)為(x,1)。

將B(x,1)代入y=x,得1=x,解得x=

∴B點坐標(biāo)為(,1),AB=。

在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,

∴AA1=AB=3,OA1=OA+AA1=1+3=4。

ABA1C1中,A1C1=AB=,

∴C1點的坐標(biāo)為(,4),即(,41)。

x=4,解得x=4。∴B1點坐標(biāo)為(4,4),A1B1=4。

在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,

∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16。

A1B1A2C2中,A2C2=A1B1=4,

∴C2點的坐標(biāo)為(,16),即(,42)。

同理,可得C3點的坐標(biāo)為(,64),即(,43)。

以此類推,則Cn的坐標(biāo)是()。 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案