已知拋物線(xiàn)y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線(xiàn)段OB.OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=-2.

1.求A、B、C三點(diǎn)的坐標(biāo);

2.求此拋物線(xiàn)的表達(dá)式

3.連接AC、BC,若點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A.點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;

4.在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值,若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由

 

 

1.解方程x2-10x+16=0得x1=2,x2=8 ………………………………1分

∵點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,且OB<OC

∴點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,8)

又∵拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是直線(xiàn)x=-2

∴由拋物線(xiàn)的對(duì)稱(chēng)性可得點(diǎn)A的坐標(biāo)為(-6,0) …………………………………2分

2.∵點(diǎn)C(0,8)在拋物線(xiàn)y=ax2+bx+c的圖象上

∴c=8,將A(-6,0)、B(2,0)代入表達(dá)式,得

 解得   

∴所求拋物線(xiàn)的表達(dá)式為y=-x2-x+8  ………………………………………5分

3.依題意,AE=m,則BE=8-m,

∵OA=6,OC=8,∴AC=10

∵EF∥AC ∴△BEF∽△BAC

∴=  即=

∴EF= …………………………………………6分 

過(guò)點(diǎn)F作FG⊥AB,垂足為G,則sin∠FEG=sin∠CAB=

∴= ∴FG=·=8-m

∴S=S△BCE-S△BFE=(8-m)×8-(8-m)(8-m)

=(8-m)(8-8+m)=(8-m)m=-m2+4m ……………………………8分

自變量m的取值范圍是0<m<8  …………………9分

4.存在.

理由:∵S=-m2+4m=-(m-4)2+8  且-<0,

∴當(dāng)m=4時(shí),S有最大值,S最大值=8  ………………………………10分

∵m=4,∴點(diǎn)E的坐標(biāo)為(-2,0)

∴△BCE為等腰三角形.  ……………………………………………12分

 解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)yax2bxc(a>0)經(jīng)過(guò)點(diǎn)B(12,0)和C(0,-6),對(duì)稱(chēng)軸為x=2.

(1)求該拋物線(xiàn)的解析式.

(2)點(diǎn)D在線(xiàn)段AB上且ADAC,若動(dòng)點(diǎn)PA出發(fā)沿線(xiàn)段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從C出發(fā)沿線(xiàn)段CB勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線(xiàn)段PQ被直線(xiàn)CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間t(秒)和點(diǎn)Q的運(yùn)動(dòng)速度;若存在,請(qǐng)說(shuō)明理由.

(3)在(2)的結(jié)論下,直線(xiàn)x=1上是否存在點(diǎn)M,使△MPQ為等腰三角形?若存在,請(qǐng)求出所有點(diǎn)M的坐

標(biāo);若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(0,3)、B(4,3)、C(1,0).
【小題1】填空:拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=______,拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)D的坐標(biāo)為_(kāi)_____;
【小題2】求該拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)yax2bxc(a≠0)的對(duì)稱(chēng)軸為x=1,且拋物線(xiàn)經(jīng)過(guò)A(—1,0)、C(0,—3)兩點(diǎn),與x軸交于另一點(diǎn)B
(1)求這條拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線(xiàn)的對(duì)稱(chēng)軸x=1上的一動(dòng)點(diǎn),求使∠PCB=90°的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆山東鄒城北宿中學(xué)九年級(jí)3月月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知拋物線(xiàn)y=ax2+bx-4a經(jīng)過(guò)A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)D(m,m+1)在第一象限的拋物線(xiàn)上, 求點(diǎn)D關(guān)于直線(xiàn)BC對(duì)稱(chēng)的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,若點(diǎn)P為拋物線(xiàn)上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011年浙江省嵊州市九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分14分)

如圖,已知拋物線(xiàn)yax2bxcx軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3)。設(shè)拋物線(xiàn)的頂點(diǎn)為D,求解下列問(wèn)題:

1.(1)求拋物線(xiàn)的解析式和D點(diǎn)的坐標(biāo);

2.(2)過(guò)點(diǎn)D作DF∥軸,交直線(xiàn)BC于點(diǎn)F,求線(xiàn)段DF的長(zhǎng),并求△BCD的面積;

3.(3)能否在拋物線(xiàn)上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫(xiě)出Q點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案