【題目】如圖,RtABC中,∠ABC90°,ABBC,直線l1l2、l3分別通過AB、C三點(diǎn),且l1l2l3.若l1l2的距離為4,l2l3的距離為6,則RtABC的面積為___________

【答案】26

【解析】過點(diǎn)BEFl2,l1E,l3F,如圖,

∵EF⊥l2,l1∥l2∥l3

∴EF⊥l1⊥l3,

∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,

又∵∠ABC=90°,

∴∠ABE+∠FBC=90°,

∴∠EAB=∠FBC,

在△ABE和△BCF中,

,

∴△ABE≌△BCF,

∴BE=CF=4,AE=BF=6,

在Rt△ABE中,AB2=BE2+AE2,

∴AB2=52,

∴S△ABC=ABBC=AB2=26.

故答案是26.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=3,ON=7,點(diǎn)P直線OB上的點(diǎn),要使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以邊長(zhǎng)為2的正方形的中心O為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點(diǎn),則線段AB的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3a(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,2),連接BC.

(1)求該拋物線的解析式和對(duì)稱軸,并寫出線段BC的中點(diǎn)坐標(biāo);
(2)將線段BC先向左平移2個(gè)單位長(zhǎng)度,再向下平移m個(gè)單位長(zhǎng)度,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C1恰好落在該拋物線上,求此時(shí)點(diǎn)C1的坐標(biāo)和m的值;
(3)若點(diǎn)P是該拋物線上的動(dòng)點(diǎn),點(diǎn)Q是該拋物線對(duì)稱軸上的動(dòng)點(diǎn),當(dāng)以P,Q,B,C四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC中,BE平分∠ABCAC邊于點(diǎn)E,過點(diǎn)EDEBCAB于點(diǎn)D,

(1)求證:△BDE為等腰三角形;

(2)若點(diǎn)DAB中點(diǎn),AB=6,求線段BC的長(zhǎng);

(3)在圖2條件下,若∠BAC=60°,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿射線BE運(yùn)動(dòng),請(qǐng)直接寫出圖3當(dāng)△ABP為等腰三角形時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是大半圓O的直徑,AO是小半圓M的直徑,點(diǎn)P是大半圓O上一點(diǎn),PA與小半圓M交于點(diǎn)C,過點(diǎn)C作CD⊥OP于點(diǎn)D.
(1)求證:CD是小半圓M的切線;
(2)若AB=8,點(diǎn)P在大半圓O上運(yùn)動(dòng)(點(diǎn)P不與A,B兩點(diǎn)重合),設(shè)PD=x,CD2=y. ①求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)y=3時(shí),求P,M兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正確的有(
A.1個(gè)
B.2 個(gè)
C.3 個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC,直線lBC的中垂線射線m為∠ABC的角平分線,直線lm相交于點(diǎn)P.若∠BAC=60°,ACP=24°,則∠ABP的度數(shù)是( )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法錯(cuò)誤的是()

A. 兩個(gè)面積相等的圓一定全等

B. 全等三角形是指形狀、大小都相同的三角形

C. 斜邊上中線和一條直角邊對(duì)應(yīng)相等的兩直角三角形全等

D. 底邊相等的兩個(gè)等腰三角形全等

查看答案和解析>>

同步練習(xí)冊(cè)答案