【題目】如圖,線段,的垂直平分線交于點(diǎn),且,則的度數(shù)為 ________

【答案】

【解析】

連接CE,由線段,的垂直平分線交于點(diǎn),得CA=CB,CE=CD,ACB=ECD=36°,進(jìn)而得∠ACE=BCD,易證ACEBCD,設(shè)∠AEC=BDC=x,得則∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根據(jù)三角形內(nèi)角和定理,即可得到答案.

連接CE

∵線段,的垂直平分線交于點(diǎn),

CA=CB,CE=CD,

=DEC,

∴∠ACB=ECD=36°,

∴∠ACE=BCD,

ACEBCD中,

,

ACEBCDSAS),

∴∠AEC=BDC

設(shè)∠AEC=BDC=x,則∠BDE=72°-x,∠CEB=92°-x

∴∠BED=DEC-CEB=72°-92°-x=x-20°,

∴在BDE中,∠EBD=180°-72°-x-x-20°)=128°.

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1.01.21,1.44,正放置的四個(gè)正方形的面積為S1S2、S3、S4,則S1+S2+S3+S4=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)出售一批進(jìn)價(jià)為2元的賀卡,在營(yíng)運(yùn)中發(fā)現(xiàn)此商品的日銷(xiāo)價(jià)x(單位:元)與銷(xiāo)售量y(單位:張)之間有如下關(guān)系:

x/元

3

4

5

6

y/張

20

15

12

10

(1)猜測(cè)并確定y與x的函數(shù)關(guān)系式.

(2)當(dāng)日銷(xiāo)售單價(jià)為10元時(shí),賀卡的日銷(xiāo)售量是多少?gòu)?

(3)設(shè)此卡的利潤(rùn)為W元,試求出W與x之間的函數(shù)關(guān)系式,若物價(jià)部門(mén)規(guī)定此卡的銷(xiāo)售單價(jià)不能超過(guò)10元,試求出當(dāng)日銷(xiāo)售單價(jià)為多少元時(shí),每天獲得的利潤(rùn)最大并求出最大的利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點(diǎn)C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求CDE的面積;

(3)直接寫(xiě)出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,完成(1-3)題:數(shù)學(xué)課上,老師出示了這樣一道題:如圖1,點(diǎn)是正上一點(diǎn)以為邊做正,連接.探究線段的數(shù)量關(guān)系,并證明.同學(xué)們經(jīng)過(guò)思考后,交流了自已的想法:

小明:通過(guò)觀察和度量,發(fā)現(xiàn)相等.”

小偉:通過(guò)全等三角形證明,再經(jīng)過(guò)進(jìn)一步推理,可以得到線段平分.”......

老師:保留原題條件,連接,的延長(zhǎng)線上一點(diǎn),(如圖2),如果,可以求出、三條線段之間的數(shù)量關(guān)系.”

1)求證;

2)求證線段平分

3)探究、、三條線段之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1) 請(qǐng)畫(huà)出ABC向左平移5個(gè)單位長(zhǎng)度后得到的ABC;

(2) 請(qǐng)畫(huà)出ABC關(guān)于原點(diǎn)對(duì)稱的ABC;

(3) 在軸上求作一點(diǎn)P,使PAB的周長(zhǎng)最小,請(qǐng)畫(huà)出PAB,并直接寫(xiě)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y= -3x+6的圖象與軸、軸分別交于、兩點(diǎn).

1)將直線向左平移1個(gè)單位長(zhǎng)度,求平移后直線的函數(shù)關(guān)系式;

2)求出平移過(guò)程中,直線在第一象限掃過(guò)的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.

(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?

(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)坐標(biāo)是(8,6).

(1)求二次函數(shù)的解析式;

(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);

(3)二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)C,使得CBD的周長(zhǎng)最小?若C點(diǎn)存在,求出C點(diǎn)的坐標(biāo);若C點(diǎn)不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案