4.點(diǎn)A,B在數(shù)軸上,它們所對應(yīng)的數(shù)分別是3,$\frac{4x-1}{3-2x}$,且點(diǎn)A,B到原點(diǎn)的距離相等,求x的值(  )
A.1B.-1C.4D.-4

分析 根據(jù)題意列出關(guān)于x的分式方程,再求解即可.

解答 解:∵點(diǎn)A,B到原點(diǎn)的距離相等,
∴3=$\frac{4x-1}{3-2x}$,
4x-1=9-6x,
解得x=1,
檢驗(yàn):把x=1代入3-2x=3-2=1≠0,
∴x=1是原方程的解.

點(diǎn)評 本題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解,解分式方程一定注意要驗(yàn)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.若二次函數(shù)y=(m+2)x2-3x+1與x軸有兩個交點(diǎn),則m的取值范圍是( 。
A.$m<\frac{1}{4}$B.$m<-\frac{1}{4}且m≠-2$C.$m<-\frac{1}{4}$D.$m<\frac{1}{4}且m≠-2$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.解方程:
(1)$\frac{2x}{x-5}$=1+$\frac{10}{x-5}$                  
(2)$\frac{2}{x-1}$-$\frac{1}{x+1}$=$\frac{3}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.(1)解分式方程:$\frac{2-x}{x-3}=\frac{1}{3-x}-2$
(2)先化簡,再求值:$\frac{{a}^{2}-2ab+^{2}}{2a-b}$÷($\frac{1}$-$\frac{1}{a}$),其中a=$\root{3}{-27}$,b=$\sqrt{16}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.計算:
(1)|-5|+(-3)2×(π-2015)0+${({\frac{1}{3}})^{-2}}$+(-1)2018
(2)$-{1^2}×{2^3}÷{({\frac{2}{3}})^2}+20×({\frac{3}{4}-\frac{4}{5}+\frac{7}{10}})$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.一元一次方程-4x=-2的解是(  )
A.x=$\frac{1}{2}$B.x=$-\frac{1}{2}$C.x=2D.x=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,試化簡:|c-b|+|b-a|-|c|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在△ABC中,∠BAC=50°,把△ABC沿EF折疊,C對應(yīng)點(diǎn)恰好與△ABC的外心O重合,則∠CFE的度數(shù)是( 。
A.40°B.45°C.50°D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.我市某工廠設(shè)計了一款成本為20元/件的工藝品,現(xiàn)投放市場進(jìn)行試銷,其每天的銷售量y(件)與銷售單價x(元/件)之間滿足的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)該工藝品的銷售單價定為多少元時,工廠每天獲得的利潤最大?最大利潤是多少?
(3)根據(jù)工廠的實(shí)際,每天銷售該工藝品的利潤不得低于8000元,請結(jié)合二次函數(shù)的大致圖象,求出該工藝品銷售單價的范圍.

查看答案和解析>>

同步練習(xí)冊答案