如圖,點(diǎn)C,D在線段AB上,△PCD是等邊三角形,△ACP∽△PDB,
(1)請(qǐng)你說明CD2=AC•BD;
(2)求∠APB的度數(shù).

(1)證明:∵△ACP∽△PDB,
∴AC:PD=PC:BD,
∴PD•PC=AC•BD,
∵△PCD是等邊三角形,
∴PC=CD=PD,
∴CD2=AC•BD;

(2)解:∵△ACP∽△PDB,
∴∠A=∠BPD,
∵△PCD是等邊三角形,
∴∠PCD=∠CPD=60°,
∴∠PCD=∠A+∠APC=60°,
∴∠APC+∠BPD=60°,
∴∠APB=∠APC+∠CPD+∠BPD=120°.
分析:(1)由△ACP∽△PDB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可得AC:PD=PC:BD,又由△PCD是等邊三角形,即可證得CD2=AC•BD;
(2)由△ACP∽△PDB,根據(jù)相似三角形對(duì)應(yīng)角相等,可得∠A=∠BPD,又由△PCD是等邊三角形,即可求得∠APB的度數(shù).
點(diǎn)評(píng):此題考查了相似三角形的性質(zhì)與等邊三角形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,點(diǎn)C、D在線段AB上,△PCD是等邊三角形.
(1)當(dāng)AC、CD、DB滿足怎樣的關(guān)系時(shí),△ACP∽△PDB;
(2)當(dāng)△ACP∽△PDB時(shí),求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,點(diǎn)D,E分別在線段AB,AC上,BE,CD相交于點(diǎn)O,AE=AD,要使△ABE≌△ACD,需添加一個(gè)條件是
∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO
(只要寫一個(gè)條件).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•郴州)如圖,點(diǎn)D、E分別在線段AB,AC上,AE=AD,不添加新的線段和字母,要使△ABE≌△ACD,需添加的一個(gè)條件是
∠B=∠C(答案不唯一)
∠B=∠C(答案不唯一)
(只寫一個(gè)條件即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)C,D在線段AB上,AC=
1
3
AB,CD=
1
2
CB,若AB=3,則圖中所有線段長(zhǎng)的和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)C、D在線段AB上,AC=
13
BC
,D是BC的中點(diǎn),CD=4.5,求線段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案