如圖,拋物線y=ax2+bx+c與x軸交于A(x1,0)、B(x2,0)兩點,與y軸交于C點,對稱軸與拋物線相交于點P,與直線BC相交于點M,連接PB.已知x1、x2
恰是方程的兩根,且sin∠OBC=.
【小題1】求該拋物線的解析式;
【小題2】拋物線上是否存在一點Q,使△QMB與△PMB的面積相等,若存在,求點Q的坐標;若不存在,說明理由
【小題3】在第一象限、對稱軸右側的拋物線上是否存在一點R,使△RPM與△RMB的面積相等,若存在,直接寫出點R的坐標;若不存在,說明理由.
【小題1】由已知,可求:OA=1,OB=3,OC=3.
設拋物線的函數(shù)關系式為y=a(x+1)(a-3).
∵拋物線與y軸交于點C(0,3),
∴3=a×1×(-3),
解得:a=-1.
所以二次函數(shù)式為y=-x2+2x+3.…………………………(3分)
【小題2】由y=-x2+2x+3=-(x-1)2+4,
則頂點P(1,4).共分兩種情況:
①由B、C兩點坐標可知,直線BC解析式為y=-x+3.
設過點P與直線BC平行的直線為:y=-x+b,
將點P(1,4)代入,得y=-x+5.
則直線BC代入拋物線解析式是否有解,有則存在點Q,
-x2+2x+3=-x+5,
解得x=1或x=2.
代入直線則得點(1,4)或(2,3).
已知點P(1,4),
所以點Q(2,3).…………(6分)
②由對稱軸及直線BC解析式可知M(1,2),PM=2,
設過P′(1,0)且與BC平行的直線為y=-x+c,
將P′代入,得y=-x+1.
聯(lián)立,
解得或.
∴Q(2,3)或Q(,)或Q(,).
………………………………………………(10分)
【小題3】由題意求得直線BC代入x=1,
則y=2.
∴M(1,2).由點M,P的坐標可知:
點R存在,即過點M平行于x軸的直線,
則代入y=2,x2-2x-1=0,
解得x1=1-(在對稱軸的左側,舍去),
x2=,
即點R(,2).…………………(13分)
解析
科目:初中數(shù)學 來源:2008年江西省南昌市初中畢業(yè)升學統(tǒng)一考試、數(shù)學試卷 題型:044
如圖,拋物線y1=-ax2-ax+1經(jīng)過點P,且與拋物線y2=ax2-ax-1,相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點,試問當x為何值時,線段CD有最大值?其最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題滿分8分)如圖,拋物線y=ax-5x+4a與x軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.
1.⑴求a的值和該拋物線頂點P的坐標.
2.⑵求DPAB的面積;
3.⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆江蘇省興化市九年級上學期期末四校聯(lián)考數(shù)學卷 題型:解答題
(本題滿分8分)如圖,拋物線y=ax-5x+4a與x軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.
【小題1】⑴求a的值和該拋物線頂點P的坐標.
【小題2】⑵求DPAB的面積;
【小題3】⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇省興化市九年級上學期期末四校聯(lián)考數(shù)學卷 題型:解答題
(本題滿分8分)如圖,拋物線y=ax-5x+4a與x軸相交于點A、B,且經(jīng)過點C(5,4).該拋物線頂點為P.
1.⑴求a的值和該拋物線頂點P的坐標.
2.⑵求DPAB的面積;
3.⑶若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com