【答案】
分析:(1)求A點(diǎn)的坐標(biāo)就是求OA的長(zhǎng),可在直角三角形OAC中,根據(jù)AC=
,OC=1來(lái)求出OA的長(zhǎng),即可得出A的坐標(biāo).如果過(guò)B作x軸的垂線(xiàn),假設(shè)垂足為F,那么△ACO≌△CBH,OA=CF,BF=OC,由此可求出B的坐標(biāo);
(2)將已經(jīng)求出的A,B的坐標(biāo)代入拋物線(xiàn)的解析式中即可求出拋物線(xiàn)的解析式;
(3)根據(jù)(2)的函數(shù)關(guān)系式即可求出D點(diǎn)的坐標(biāo).求△DBC的面積時(shí),可將△DBC分成△CBE和△DCE兩部分(假設(shè)BD交x軸于E).可先根據(jù)B,D的坐標(biāo)求出BD所在直線(xiàn)的解析式,進(jìn)而求出E點(diǎn)的坐標(biāo),那么可求出CE的長(zhǎng),然后以B,D兩點(diǎn)的縱坐標(biāo)的絕對(duì)值分別作為△BCE和△DCE的高,即可求出△DBC的面積;
(4)本題的關(guān)鍵是求出B′,C′兩點(diǎn)的坐標(biāo).過(guò)點(diǎn)B′作B′M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,過(guò)點(diǎn)C″作C″P⊥y軸于點(diǎn)P.然后仿照(1)中求坐標(biāo)時(shí)的方法,通過(guò)證Rt△AB′M≌Rt△BAN來(lái)得出B′的坐標(biāo).同理可得出C′的坐標(biāo).然后將兩點(diǎn)的坐標(biāo)分別代入拋物線(xiàn)的解析式中,進(jìn)而可判斷出兩點(diǎn)是否在拋物線(xiàn)上.
解答:解:由題意得
(1)∵AC=
,CO=1,
∴AO=
=2,
∴A(0,2),
做BF⊥OC,
∵BC=AC,∠AOC=∠BFC,
∠CAO=∠BCF,
∴△BFC≌△COA,
∴CF=AO=2,
∴B(-3,1)
故答案為:A(0,2),B(-3,1).
(2)將B(-3,1)代入y=ax
2+ax-2得:
1=9a-3a-2,
∴a=
,
∴y=
x
2+
x-2.
(3)如圖1,可求得拋物線(xiàn)的頂點(diǎn)D(-
,
).
設(shè)直線(xiàn)BD的關(guān)系式為y=kx+b,將點(diǎn)B、D的坐標(biāo)代入,
求得k=-
,b=-
,
∴BD的關(guān)系式為y=-
x-
.
設(shè)直線(xiàn)BD和x軸交點(diǎn)為E,則點(diǎn)E(
,0),CE=
.
∴△DBC的面積為S
CBE+S
CED=
×
×1+
×
×
,
=
.
(4)如圖2,過(guò)點(diǎn)B′作B′M⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥y軸于點(diǎn)N,
過(guò)點(diǎn)C″作C″P⊥y軸于點(diǎn)P.(8分)
在Rt△AB′M與Rt△BAN中,
∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM-∠AMB'-∠ANB,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點(diǎn)C′(2,1);
將點(diǎn)B′、C′的坐標(biāo)代入y=
x
2+
x-2,可知點(diǎn)B′、C′在拋物線(xiàn)上.
(事實(shí)上,點(diǎn)P與點(diǎn)N重合)
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形全等、圖形旋轉(zhuǎn)變換等重要知識(shí)點(diǎn);綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.