【題目】如圖,在矩形ABCD中,AB=5,BC=10 ,一圓弧過點(diǎn)B和點(diǎn)C,且與AD相切,則圖中陰影部分面積為 .
【答案】75 ﹣
【解析】解:設(shè)圓弧的圓心為O,與AD切于E,
連接OE交BC于F,連接OB、OC,
設(shè)圓的半徑為x,則OF=x﹣5,
由勾股定理得,OB2=OF2+BF2 ,
即x2=(x﹣5)2+(5 )2 ,
解得,x=5,
則∠BOF=60°,∠BOC=120°,
則陰影部分面積為:矩形ABCD的面積﹣(扇形BOCE的面積﹣△BOC的面積)
=10 ×5﹣ + ×10 ×5=75 ﹣ ,
所以答案是:75 ﹣ .
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)和切線的性質(zhì)定理的相關(guān)知識點(diǎn),需要掌握矩形的四個角都是直角,矩形的對角線相等;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動點(diǎn)P在拋物線上.
(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,向一個半徑為R、容積為V的球形容器內(nèi)注水,則能夠反映容器內(nèi)水的體積y與容器內(nèi)水深x間的函數(shù)關(guān)系的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點(diǎn)A,B分別向上平移2個單位,再向右平移1個單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.
(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.
(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列數(shù)組作為三角形的三條邊長,其中能構(gòu)成直角三角形的是( )
A. 1, ,3 B. , ,5 C. 1.5,2,2.5 D. , ,
【答案】C
【解析】A、12+()2≠32,不能構(gòu)成直角三角形,故選項(xiàng)錯誤;
B、(2+()2≠52,不能構(gòu)成直角三角形,故選項(xiàng)錯誤;
C、1.52+22=2.52,能構(gòu)成直角三角形,故選項(xiàng)正確;
D、())2+()2≠()2,不能構(gòu)成直角三角形,故選項(xiàng)錯誤.
故選:C.
【題型】單選題
【結(jié)束】
3
【題目】在Rt△ABC中,∠C=90°,AC=9,BC=12,則點(diǎn)C到斜邊AB的距離是( )
(A) (B) (C)9 (D)6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知△ABC,以AB、AC為邊分別向外作正方形ABFD和正方形ACGE,連結(jié)BE、CD,猜想BE與CD有什么數(shù)量關(guān)系?并說明理由;
(2)請模仿正方形情景下構(gòu)造全等三角形的思路,利用構(gòu)造全等三角形完成下題:如圖2,要測量池塘兩岸相對的兩點(diǎn)B、E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長交BA的延長線于點(diǎn)F,交AD于點(diǎn)E.
(1)求證:AG=CG.
(2)求證:AG2=GEGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,線段AB和直線a如圖所示,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點(diǎn)均在格點(diǎn)上.
(1)在圖中畫出以線段AB為一邊的正方形 ABCD,且點(diǎn)C和點(diǎn)D均在格點(diǎn)上,
并直接寫出正方形 ABCD的面積為 ;
(2)在圖中以線段AB為一腰的等腰三角形ABE,點(diǎn)E在格點(diǎn)上,則滿足條件的點(diǎn)E有_____ 個;
(3)在圖中的直線a上找一點(diǎn)Q,使得△QAB的周長最小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com