20.如圖所示,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段ME、AE、BE之間的數(shù)量關(guān)系,并說(shuō)明理由.

分析 首先依據(jù)SAS證明△ADC≌△BEC,全等三角形的性質(zhì)可知∠CEB=∠CDA=135°,BE=AD,由∠AEB=∠CEB-∠CED可求得∠AEB的度數(shù),由等腰三角形三線合一的性質(zhì)可知DM=ME,即DE=2ME,最后依據(jù)AE=AD+DE可得到ME、AE、BE之間的數(shù)量關(guān)系.

解答 解:∵△ACB和△DCE均為等腰直角三角形,
∴AC=BC,DC=CE,∠CDE=∠CED=45°.
∴∠ADC=135°.
∵∠ACD+∠DCB=90°,∠ECB+DCB=90°,
∴∠ACD=∠ECB.
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠ECB}\\{DC=CE}\end{array}\right.$,
∴△ACD≌△BCE.
∴∠CEB=∠CDA=135°,AD=BE.
∴∠AEB=∠CEB-∠CED=135°-45°=90°.
∵CD=CE,CM⊥AE,
∴DM=EM.
∴DE=2EM.
∵AD+DE=AE,
∴BE+2EM=AE.

點(diǎn)評(píng) 本題主要考查的是全等三角形的性質(zhì)和判定、等腰三角形的性質(zhì)、等腰三角形三線合一的性質(zhì),證得△ACD≌△BCE,DE=2EM是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.用“★”規(guī)定新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有a★b=a2-b,如果x★13=2,那么x等于( 。
A.15B.$\sqrt{15}$C.$-\sqrt{15}$D.±$\sqrt{15}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如果m表示$\sqrt{10}$的小數(shù)部分,試求代數(shù)式m2+6m-2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D是AB邊上的一點(diǎn),以BD為直徑作⊙O,過O作AC的垂線交AC于點(diǎn)E,恰好垂足E在⊙O上,連接DE并延長(zhǎng)DE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:BD=BF;
(2)若CF=2,cosB=$\frac{3}{5}$,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在直角梯形ABCD中,已知AB∥DC,DE⊥BC,E是BC的中點(diǎn),探究AB,DC,AD的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖,在正方形ABCD中,AB=8,Q是CD的中點(diǎn),在CD上取一點(diǎn)P,使∠BAP=2∠DAQ,則CP的長(zhǎng)度等于( 。
A.1B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.兩塊完全一樣的含30°角的直角三角板,將它們重疊在一起并繞其較長(zhǎng)直角邊的中點(diǎn)M轉(zhuǎn)動(dòng),使上面一塊三角板的斜邊剛好過下面一塊三角板的直角頂點(diǎn)C,如圖所示.已知AC=6,則這兩塊直角三角板頂點(diǎn)A、A′之間的距離等于3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖1,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4),C(2,0),將矩形OABC繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)30°,得到矩形EFGH(點(diǎn)E與O重合).
(1)求點(diǎn)F的坐標(biāo),并判斷點(diǎn)F是否在線段BC上;
(2)如圖2,將矩形FEGH沿y軸向下平移m個(gè)單位,
①當(dāng)四邊形OFCE是平行四邊形使,則m的值是多少?此時(shí)過點(diǎn)O作直線l將?OFCE分為面積比為1:3的兩部分,求直線l的解析式;
②設(shè)矩形EFGH沿y軸向下平移過程中與矩形OABC重疊部分面積為S,寫出S關(guān)于m的解析式,并求當(dāng)S:S矩形ABCO=$\sqrt{3}$:6時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算:(m-1)(m+1)-m2=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案