如圖,梯子斜靠在與地面垂直(垂足為O)的墻上,當(dāng)梯子位于AB位置時,它與地面所成的角∠ABO=60°;當(dāng)梯子底端向右滑動1m(即BD=1m)到達(dá)CD位置時,它與地面所成的角∠CDO=51°18′,求梯子的長.
(參考數(shù)據(jù):sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)
8米

試題分析:設(shè)梯子的長為xm.在Rt△ABO中,根據(jù)三角函數(shù)得到OB,在Rt△CDO中,根據(jù)三角函數(shù)得到OD,再根據(jù)BD=OD-OB,得到關(guān)于x的方程,解方程即可求解.
試題解析:設(shè)梯子的長為xm.
在Rt△ABO中,,∴
在Rt△CDO中,,∴
∵BD=OD-OB,∴,解得x=8.
∴梯子的長是8米.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在等邊三角形ABC中,AD⊥BC于點(diǎn)D.
(1)如圖1,請你直接寫出線段AD與BC之間的數(shù)量關(guān)系: AD=     BC;
(2)如圖2,若P是線段BC上一個動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),聯(lián)結(jié)AP,將線段AP繞點(diǎn)A逆時針旋轉(zhuǎn)60°,得到線段AE,聯(lián)結(jié)CE,猜想線段AD、CE、PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,若點(diǎn)P是線段BC延長線上一個動點(diǎn),(2)中的其他條件不變,按照(2)中的作法,請?jiān)趫D3中補(bǔ)全圖形,并直接寫出線段AD、CE、PC之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1是一張折疊椅子,圖2是其側(cè)面示意圖,已知椅子折疊時長1.2米,椅子展開后最大張角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF與地面平行,當(dāng)展開角最大時,請解答下列問題:
(1)求∠CGF的度數(shù);
(2)求座面EF與地面之間的距離。(可用計(jì)算器計(jì)算,結(jié)果保留兩個有效數(shù)字,參考數(shù)據(jù):sin71.5°≈0.948,cos71.5°≈0.317,tan71.5°≈2.989

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

馬航MH370失聯(lián)后,我國政府積極參與搜救.某日,我兩艘專業(yè)救助船A、B同時收到有關(guān)可疑漂浮物的訊息,可疑漂浮物P在救助船A的北偏東53.50方向上,在救助船B的西北方向上,船B在船A正東方向140海里處。(參考數(shù)據(jù):sin36.5≈0.6,cos36.5≈0.8,tan36.5≈0.75).
(1)求可疑漂浮物P到A、B兩船所在直線的距離;
(2)若救助船A、救助船B分別以40海里/時,30海里/時的速度同時出發(fā),勻速直線前往搜救,試通過計(jì)算判斷哪艘船先到達(dá)P處。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一貨輪在海上由西往東行駛,從A、B兩個小島中間穿過.當(dāng)貨輪行駛到點(diǎn)P處時,測得小島A在正北方向,小島B位于南偏東24.5°方向;貨輪繼續(xù)前行12海里,到達(dá)點(diǎn)Q處,又測得小島A位于北偏西49°方向,小島B位于南偏西41°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△BEC是等邊三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交點(diǎn)為O.
(1)求證:△AEC≌△DEB;
(2)若∠ABC=∠DCB=90°,AB=2cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,我校綜合實(shí)踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺階AC的坡度為1:,且B、C、E三點(diǎn)在同一條直線上.
請根據(jù)以上條件求出樹DE的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,某市進(jìn)行城區(qū)規(guī)劃,工程師需測某樓AB的高度,工程師在D得用高2m的測角儀CD,測得樓頂端A的仰角為30°,然后向樓前進(jìn)30m到達(dá)E,又測得樓頂端A的仰角為60°,樓AB的高為
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

水利部門為加強(qiáng)防汛工作,決定對某水庫大壩進(jìn)行加固,大壩的橫截面是梯形ABCD,如圖所示,已知迎水坡面AB的長為16米,∠B=60°,背水坡面CD的長為16米,加固后大壩的橫截面為梯形ABED,CE的長為8米.

(1)已知需加固的大壩長為150米,求需要填土石方多少立方米?
(2)求加固后的大壩背水坡面DE的坡度.

查看答案和解析>>

同步練習(xí)冊答案