線段AB兩端點的坐標分別為A(2,4),B(5,2),若將線段AB平移,使得點B的對應點為點C(3,-1).則平移后點A的對應點的坐標為________.

(0,1)
分析:先得到點B的對應規(guī)律,依此得到A的坐標即可.
解答:∵B(5,2),點B的對應點為點C(3,-1).
∴變化規(guī)律是橫坐標減2,縱坐標減3,
∵A(2,4),
∴平移后點A的對應點的坐標為 (0,1),
故答案為(0,1).
點評:考查點的平移變換;得到一對對應點的變換規(guī)律是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、在平面直角坐標系中,線段AB兩端點的坐標分別為A(1,0),B(3,2).將線段AB平移后,A,B的對應點的坐標可以是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關于原點O的對稱點A2、B2(應保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2
(3)設線段AB兩端點的坐標分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最?若存在,求出點C的坐標(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、線段AB兩端點的坐標分別為A(2,4),B(5,2),若將線段AB平移,使得點B的對應點為點C(3,-1).則平移后點A的對應點的坐標為
(0,1)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圖形的對稱》(02)(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關于原點O的對稱點A2、B2(應保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設線段AB兩端點的坐標分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最小?若存在,求出點C的坐標(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年福建省泉州市中考數(shù)學試卷(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關于原點O的對稱點A2、B2(應保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設線段AB兩端點的坐標分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最。咳舸嬖,求出點C的坐標(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案