【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,OD是OB的反向延長線.若OC是∠AOD的平分線,則∠BOC=_____°,射線OC的方向是_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若順次連接四邊形的各邊中點(diǎn)所得的四邊形是菱形,則該四邊形一定是( )
A. 矩形 B. 一組對邊相等,另一組對邊平行的四邊形
C. 對角線互相垂直的四邊形 D. 對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD內(nèi)放入六個小正方形后形成一個中心對稱圖形,其中頂點(diǎn)E、F分別在邊BC、AD上,則長AD與寬AB的比值為( )
A.6:5
B.13:10
C.8:7
D.4:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸周末步行去游泳館游冰,爸爸先出發(fā)了一段時間后小明才出發(fā),途中小明在離家1400米處的報(bào)亭休息了一段時間后繼續(xù)按原來的速度前往游泳館.兩人離家的距離y(米)與小明所走時間x(分鐘)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象信息解答下列問題:
(1)小明出發(fā) 分鐘后第一次與爸爸相遇;
(2)分別求出爸爸離家的距離y1和小明到達(dá)報(bào)亭前離家的距離y2與時間x之間的函數(shù)關(guān)系式;
(3)求小明在報(bào)亭休息了多長時間遇到姍姍來遲的爸爸;
(4)若游泳館離小明家2000米,請你通過計(jì)算說明誰先到達(dá)游泳館.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中的網(wǎng)格稱之為三角形網(wǎng)格,它的每一個小三角形都是邊長為1的正三角形,畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正三角形的頂點(diǎn)處),如圖所示,請按照下列要求,畫出相應(yīng)的圖形,并計(jì)算.
(1)請?jiān)冖僦挟嫵鲆粋與△ABC面積相等,且不全等的格點(diǎn)三角形,并寫出相應(yīng)的面積;
(2)請?jiān)趫D②和圖③中分別畫出一個與△ABC相似,且互補(bǔ)全等的格點(diǎn)三角形,并寫出相應(yīng)的相似比k(△ABC與△A′B′C′之比)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2014年12月28日北京公交地鐵調(diào)價(jià)以來,人們的出行成本發(fā)生了較大的變化. 小林根據(jù)新聞,將地鐵和公交車的票價(jià)繪制成了如下兩個表格。(說明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他類似)
|
|
根據(jù)以上信息回答下列問題:
小林辦了一張市政交通一卡通學(xué)生卡,目前乘坐地鐵沒有折扣。
(1)如果小林全程乘坐地鐵的里程為14公里,用他的學(xué)生卡需要刷卡交費(fèi)________元;
(2)如果小林全程乘坐公交車的里程為16公里,用他的學(xué)生卡需要刷卡交________元;
(3)小林用他的學(xué)生卡乘坐一段地鐵后換乘公交車,兩者累計(jì)里程為12公里。已知他乘坐地鐵平均每公里花費(fèi)0.4元,乘坐公交車平均每公里花費(fèi)0.25元,此次行程共花費(fèi)4.5元。請問小林乘坐地鐵和公交車的里程分別是多少公里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn)和點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)直接寫出不等式的解集;
(3)若點(diǎn)A關(guān)于y軸的對稱點(diǎn)為C,問是否在x軸下方存在一點(diǎn)D,使以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形是平行四邊形.若存在,直接寫出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F。
(1)求證:CE=CF。
(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點(diǎn)E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于M,N兩點(diǎn),且OM=ON=3.
(1)求這條直線的函數(shù)表達(dá)式;
(2)Rt△ABC與直線l在同一個平面直角坐標(biāo)系內(nèi),其中∠ABC=90°,AC=2 ,A(1,0),B(3,0),將△ABC沿著x軸向左平移,當(dāng)點(diǎn)C落在直線l上時,求線段AC掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com