【題目】如圖,已知E是平行四邊形ABCDDA邊的延長線上一點,且AD2AE,連接EC分別交ABBD于點F,G

1)求證:BF2AF;

2)若BD20cm,求DG的長.

【答案】1)證明見解析;(212cm

【解析】

1)根據(jù)平行四邊形的性質得到ABCD,ADBC,利用平行線分線段成比例定理進行分析從而得到結論;

2)根據(jù)平行四邊形的性質AB=CD,則利用BF=2AF得到BFABCD,再利用BFCD,根據(jù)平行線分線段成比例定理得到,然后根據(jù)比例的性質求DG的長.

解:(1四邊形ABCD為平行四邊形,

∴AB∥CDAD∥BC,

∵AF∥CD,

,

∵AE∥BC,

,

∴BF2AF;

2)解:四邊形ABCD為平行四邊形,

∴ABCD,

BF2AF,

∴BFABCD,

∵BF∥CD,

,

∴DGBD×2012cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某旅游團到永定土樓觀光,計劃購買A型、B型兩種型號的土樓模型.若購買8A型土樓模型和5B型土樓模型需用1540元;若購買4A型土樓模型和6B型土樓模型需用1120元.求AB兩種型號土樓模型的單價分別是多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在半圓中,直徑的長為6,點是半圓上一點,過圓心的垂線交線段的延長線于點,交弦于點

1)求證:;

2)記,求關于的函數(shù)表達式;

3)若,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠C=90°,ADDB,點EAB的中點,DEBC

1)求證:BD平分∠ABC;

2)連接EC,若∠A=30°,DC,求EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,點的中點,以點為圓心作圓心角為的扇形,點恰在弧上,則圖中陰影部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx2x軸交于點B,與y軸交于點A,拋物線yax2x+c經(jīng)過A,B兩點,與x軸的另一交點為C

1)求拋物線的解析式;

2M為拋物線上一點,直線AMx軸交于點N,當時,求點M的坐標;

3P為拋物線上的動點,連接AP,當∠PAB與△AOB的一個內角相等時,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形:

1)可知tanα,tanβ,用畫圖法tanα+β)的值,具體解法如下:

第一步:如圖1所示,構造符合題意兩個背靠背的直角三角形;

第二步:如圖2所示,將圖1中所有數(shù)據(jù)同比例擴大3倍;

第三步:如圖3所示,依托中間的RtABD的各頂點構造水平﹣﹣豎直輔助線,構造出一線三直角基本相似型,并補成矩形ACEF;由圖可知tanα+β)=   

2)依據(jù)(1)的方法,已知tanα,tanβ,用畫圖法tanα+β)的值.

3)擴展延伸,已知tanαtanβ,直接寫出tanαβ)=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,將矩形ABCD折疊,使點C與點A重合,點D落在點G處,折痕為EF

1)如圖1,求證:BEGF;

2)如圖2,連接CF、DG,若CE2BE,在不添加任何輔助線的情況下,請直接寫出圖2中的四個三角形,使寫出的每個三角形都為等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某初中學校舉行校園歌唱大賽,對各年級同學的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中相關數(shù)據(jù)解答下列題:

1)請將條形統(tǒng)計圖補全;

2)獲得一等獎的同學中有來自七年級,有來自八年級,其他同學均來自九年級,現(xiàn)準備從獲得一等獎的同學中任選兩人參加全市校園歌唱大賽,請通過列表或畫樹狀圖求所選出的兩人中有七年級或八年級同學的概率.

查看答案和解析>>

同步練習冊答案