【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為.雙曲線的圖象經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.
【答案】(1)k=3,點(diǎn)E的坐標(biāo)為;(2)
【解析】
(1)首先根據(jù)點(diǎn)B的坐標(biāo)和點(diǎn)D為BC的中點(diǎn)表示出點(diǎn)D的坐標(biāo),代入反比例函數(shù)的解析式求得k值,然后將點(diǎn)E的橫坐標(biāo)代入求得E點(diǎn)的縱坐標(biāo)即可;
(2)根據(jù)△FBC∽△DEB,利用相似三角形對(duì)應(yīng)邊的比相等確定點(diǎn)F的坐標(biāo)后即可求得直線FB的解析式.
解:(1)∵BC∥x軸,點(diǎn)B的坐標(biāo)為(2,3),
∴BC=2,
∵點(diǎn)D為BC的中點(diǎn),
∴CD=1,
∴點(diǎn)D的坐標(biāo)為(1,3),
代入雙曲線y=(x>0)得;
∵BA∥y軸,
∴點(diǎn)E的橫坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,為2,
∵點(diǎn)E在雙曲線上,
∴y=
∴點(diǎn)E的坐標(biāo)為(2,);
(2)∵點(diǎn)E的坐標(biāo)為(2,),B的坐標(biāo)為(2,3),點(diǎn)D的坐標(biāo)為(1,3),
∴BD=1,BE=,BC=2,
∵△FBC∽△DEB,
∴,
即:,
∴FC=,
∴點(diǎn)F的坐標(biāo)為(0,),
設(shè)直線FB的解析式y=kx+b(k≠0),
則,
解得:k=,b=,
∴直線FB的解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2 +bx+ 4與x軸的兩個(gè)交點(diǎn)分別為A(-4,0)、B(2,0),與y軸交于點(diǎn)C,頂點(diǎn)為D.E(1,2)為線段BC的中點(diǎn),BC的垂直平分線與x軸、y軸分別交于F、G.
(1)求拋物線的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)在直線EF上求一點(diǎn)H,使△CDH的周長(zhǎng)最小,并求出最小周長(zhǎng);
(3)若點(diǎn)K在x軸上方的拋物線上運(yùn)動(dòng),當(dāng)K運(yùn)動(dòng)到什么位置時(shí),
△EFK的面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,如圖1,AB是⊙O的弦,點(diǎn)F是的中點(diǎn),過(guò)點(diǎn)F作EF⊥AB于點(diǎn)E,易得點(diǎn)E是AB的中點(diǎn),即AE=EB.⊙O上一點(diǎn)C(AC>BC),則折線ACB稱(chēng)為⊙O的一條“折弦”.
(1)當(dāng)點(diǎn)C在弦AB的上方時(shí)(如圖2),過(guò)點(diǎn)F作EF⊥AC于點(diǎn)E,求證:點(diǎn)E是“折弦ACB”的中點(diǎn),即AE=EC+CB.
(2)當(dāng)點(diǎn)C在弦AB的下方時(shí)(如圖3),其他條件不變,則上述結(jié)論是否仍然成立?若成立說(shuō)明理由;若不成立,那么AE、EC、CB滿(mǎn)足怎樣的數(shù)量關(guān)系?直接寫(xiě)出,不必證明.
(3)如圖4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圓⊙O的半徑為2,過(guò)⊙O上一點(diǎn)P作PH⊥AC于點(diǎn)H,交AB于點(diǎn)M,當(dāng)∠PAB=45°時(shí),求AH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(-2,0),B(0,-4)與x軸交于另一點(diǎn)C,連接BC.
(1)求拋物線的解析式;
(2)如圖,P是第一象限內(nèi)拋物線上一點(diǎn),BP交x軸于點(diǎn)E,且S△PBO=S△PBC,求證:E是OC的中點(diǎn);
(3)在(2)的條件下求點(diǎn)P的坐標(biāo).
(4)在(2)的條件下拋物線上是否存在點(diǎn)D,使△ACD的面積與△ABP的面積相等?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)的圖象如圖所示,下列結(jié)論中:①;②;③(的實(shí)數(shù));④;⑤,其中正確的是( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)(2017·黃岡)已知:如圖,一次函數(shù)y=-2x+1與反比例函數(shù)y=的圖象有兩個(gè)交點(diǎn)A(-1,m)和B,過(guò)點(diǎn)A作AE⊥x軸,垂足為E;過(guò)點(diǎn)B作BD⊥y軸,垂足為點(diǎn)D,且點(diǎn)D的坐標(biāo)為(0,-2),連結(jié)DE.
(1)求k的值;
(2)求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度沿B→A→C運(yùn)動(dòng)到點(diǎn)C停止.若△BPQ的面積為y運(yùn)動(dòng)時(shí)間為x(s),則下列圖象中能大致反映y與x之間關(guān)系的是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,3),且OB=OC=3AO.直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)E,點(diǎn)Q是拋物線的頂點(diǎn),設(shè)直線AD上方的拋物線上的動(dòng)點(diǎn)P的橫坐標(biāo)為m.
(1)求該拋物線的解析式及頂點(diǎn)Q的坐標(biāo);
(2)連結(jié)CQ,判斷線段CQ與線段AE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由.
(3)連結(jié)PA、PD,當(dāng)m為何值時(shí),S△PAD=S△DAB;
(4)在直線AD上是否存在一點(diǎn)H使△PQH為等腰直角三角形,若存在請(qǐng)求出m的值,不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)要建一個(gè)飼養(yǎng)場(chǎng)(長(zhǎng)方形ABCD),飼養(yǎng)場(chǎng)的一面靠墻(墻最大可用長(zhǎng)度為27米),另三邊用木欄圍成,中間也用木欄隔開(kāi),分成兩個(gè)場(chǎng)地,并在如圖所示的三處各留1米寬的門(mén)(不用木欄),建成后木欄總長(zhǎng)57米,設(shè)飼養(yǎng)場(chǎng)(長(zhǎng)方形ABCD)的寬為a米.
(1)飼養(yǎng)場(chǎng)的長(zhǎng)為多少米(用含a的代數(shù)式表示).
(2)若飼養(yǎng)場(chǎng)的面積為288m2,求a的值.
(3)當(dāng)a為何值時(shí),飼養(yǎng)場(chǎng)的面積最大,此時(shí)飼養(yǎng)場(chǎng)達(dá)到的最大面積為多少平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com