11.如圖,在四邊形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于點E,點G,H分別是AC,BD的中點,若∠BEC=70°,那么∠GHE=20度.

分析 連接AH和CH,根據(jù)直角三角形斜邊上中線性質得出AH=CH=$\frac{1}{2}$BD,根據(jù)等腰三角形性質求出HG⊥AC,求出∠HGE=90°,即可得出答案.

解答 解:
連接AH和CH,
∵H為BD的中點,∠BAD=∠BCD=90°,
∴AH=CH=$\frac{1}{2}$BD,
∵G為AC的中點,
∴HG⊥AC,
∴∠HGE=90°,
∵∠GEH=∠BEC=70°,
∴∠GHE=180°-90°-70°=20°,
故答案為:20.

點評 本題考查了直角三角形斜邊上中線性質,等腰三角形的性質,三角形內角和定理的應用,能求出HG⊥AC是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

1.解方程$\frac{x-1}{4}=3-\frac{1+2x}{8}$去分母正確的是( 。
A.2(x-1)=24-1-2xB.2(x-1)=24-1+2xC.2(x-1)=3-1-2xD.2(x-1)=3-1+2x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.解不等式組,并把它的解集在數(shù)軸上表示出來:
(1)$\left\{\begin{array}{l}{2x+1>0}\\{x>2x-5}\end{array}\right.$                 
(2)$\left\{\begin{array}{l}{3(x+2)>x+8}\\{\frac{x}{4}>\frac{x-1}{3}}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.已知一次函數(shù)y=mx-3m2+12,請按要求解答問題:
(1)m為何值時,函數(shù)圖象過原點,且y隨x的增大而減小?
(2)若函數(shù)圖象平行于直線y=-x,求一次函數(shù)解析式;
(3)若點(0,-15)在函數(shù)圖象上,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.計算:2cos45°-(tan40°+1)0+$\sqrt{\frac{1}{4}}$+(sin30°)-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.已知線段AB和CD,
(1)請用尺規(guī)按要求作圖;延長線段AB到E,使BE=2CD;
(2)在(1)所作的圖中,N為AE中點,若AB=6,CD=4,求BN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

3.若a和b都是有理數(shù),則下列①若a≠b,則a2≠b2;②若a>b,則a2>b2;③若a>b,則|a|>|b|;④若a2>b2,則a>b說法中,正確的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

20.一個長方體的主視圖和左視圖如圖所示,則其俯視圖的面積是( 。
A.2B.3C.6D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖,△ABC≌△DEF,AB和DE是對應邊,∠A和∠D是對應角,找出圖中所有相等的線段和角.

查看答案和解析>>

同步練習冊答案