某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) | |
銷售玩具獲得利潤w(元) | |
(1)1000-10x,-10x2+1300x-30000;(2)50元或80元;(3)8640元.
解析試題分析:(1)由銷售單價每漲1元,就會少售出10件玩具得y=600-(x-40)×10=1000-10x,利潤=(1000-10x)(x-30)=-10x2+1300x-30000;
(2)令-10x2+1300x-30000=10000,求出x的值即可;
(3)首先求出x的取值范圍,然后把w=-10x2+1300x-30000轉(zhuǎn)化成y=-10(x-65)2+12250,結(jié)合x的取值范圍,求出最大利潤.
試題解析:(1)
(2)-10x2+1300x-30000=10000銷售單價(元) x 銷售量y(件) 1000-10x 銷售玩具獲得利潤w(元) -10x2+1300x-30000
解之得:x1=50,x2=80
答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤,
(3)根據(jù)題意得
解之得:44≤x≤46,
w=-10x2+1300x-30000=-10(x-65)2+12250,
∵a=-10<0,對稱軸是直線x=65,
∴當44≤x≤46時,w隨x增大而增大.
∴當x=46時,W最大值=8640(元).
答:商場銷售該品牌玩具獲得的最大利潤為8640元.
考點: 1.二次函數(shù)的應(yīng)用;2.一元二次方程的應(yīng)用.
科目:初中數(shù)學 來源: 題型:解答題
如圖,直角梯形OABC中,AB∥OC,點A坐標為(0,6),點C坐標為(3,0),BC=,一拋物線過點A、B、 C.
(1)填空:點B的坐標為 ;
(2)求該拋物線的解析式;
(3)作平行于x軸的直線與x軸上方的拋物線交于點E 、F,以EF為直徑的圓恰好與x軸相切,求該圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,-),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某商場購進一批單價為50元的商品,規(guī)定銷售時單價不低于進價,每件的利潤不超過40%.其中銷售量y(件)與所售單價x(元)的關(guān)系可以近似的看作如圖所表示的一次函數(shù).
(1)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)設(shè)該公司獲得的總利潤(總利潤=總銷售額-總成本)為w元,求w與x之間的函數(shù)關(guān)系式.當銷售單價為何值時,所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過A(-1,0),B(3,0),C(0,-3)三點,求這個二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線與x軸交于A、B兩點,點C是拋物線在第一象限內(nèi)部分的一個動點,點D是OC的中點,連接BD并延長,交AC于點E.
(1)說明:;
(2)當點C、點A到y(tǒng)軸距離相等時,求點E坐標.
(3)當的面積為時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):.
(1)設(shè)李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?
(3)根據(jù)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點A(0,2),點C(,0),如圖所示:拋物線經(jīng)過點B。
(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com