【題目】如圖,中,

1)請(qǐng)用尺規(guī)作圖的方法在邊上確定點(diǎn),使得點(diǎn)到邊的距離等于的長(zhǎng);(保留作用痕跡,不寫(xiě)作法)

2)在(1)的條件下,求證:

【答案】1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

1)作出∠ABC的角平分線BM交線段ACP,利用角平分線上的點(diǎn)到角的兩邊的距離相等可知點(diǎn)P即為所求;

2)過(guò)點(diǎn)PPNBC,交BC于點(diǎn)N,通過(guò)證明得到AB=BN,且易得PN=NC,由BC=BN+NC,等線段轉(zhuǎn)化即可得證.

解:(1)如圖:利用尺規(guī)作圖,作出∠ABC的角平分線BM交線段ACP,則點(diǎn)到邊的距離等于的長(zhǎng);

2)如圖,過(guò)點(diǎn)PPNBC,交BC于點(diǎn)N,由(1)可知:PA=PN,

中,

,

(HL)

AB=BN,

,

∴∠C=45°,

又∵∠PNC=90°

∴∠NPC=C=45°

PN=NC,

BC=BN+NC=AB+PN=AB+AP.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,對(duì)角線ACBD相交于點(diǎn)O,E是邊AB上的一個(gè)動(dòng)點(diǎn)(不與AB重合),連接EO并延長(zhǎng),交CD于點(diǎn)F,連接AFCE,下列四個(gè)結(jié)論中:

①對(duì)于動(dòng)點(diǎn)E,四邊形AECF始終是平行四邊形;

②若∠ABC90°,則至少存在一個(gè)點(diǎn)E,使得四邊形AECF是矩形;

③若ABAD,則至少存在一個(gè)點(diǎn)E,使得四邊形AECF是菱形;

④若∠BAC45°,則至少存在一個(gè)點(diǎn)E,使得四邊形AECF是正方形.

以上所有正確說(shuō)法的序號(hào)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,A,B兩個(gè)頂點(diǎn)在x軸上方,點(diǎn)C的坐標(biāo)是(1,0),以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長(zhǎng)放大到原來(lái)的2倍,得到△A'B'C',設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B'的橫坐標(biāo)為2,則點(diǎn)B的橫坐標(biāo)為(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=ACAC交⊙O于點(diǎn)E,BC交⊙O于點(diǎn)DFCE的中點(diǎn),連接DF.則下列結(jié)論錯(cuò)誤的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,號(hào)樓在號(hào)樓的南側(cè),兩樓高度均為樓間距為.冬至日正午,太陽(yáng)光線與水平面所成的角為號(hào)樓在號(hào)樓墻面上的影高為,春分日正午,太陽(yáng)光線與水平面所成的角為,號(hào)樓在號(hào)樓墻面上的影高為.已知

1)求樓間距

2)若號(hào)樓共層,層高均為則點(diǎn)位于第幾層? ( 參考數(shù)據(jù):,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖2.圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應(yīng)的常數(shù)項(xiàng).把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來(lái),就是,類(lèi)似地,圖2所示的算籌圖我們可以表述為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(操作)BD是矩形ABCD的對(duì)角線,AB=4BC=3.將BAD繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)α度(α360°)得到BEF,點(diǎn)A、D的對(duì)應(yīng)點(diǎn)分別為E、F.若點(diǎn)E落在BD上,如圖①,則DE=______

(探究)當(dāng)點(diǎn)E落在線段DF上時(shí),CDBE交于點(diǎn)G.其它條件不變,如圖②.

1)求證:ADB≌△EDB;

2CG的長(zhǎng)為______

(拓展)連結(jié)CF,在BAD的旋轉(zhuǎn)過(guò)程中,設(shè)CEF的面積為S,直接寫(xiě)出S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合,將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q

1)如圖,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

2)如圖,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ

3)在(2)的條件下,BP=2,CQ=9,則BC的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,蘭蘭站在河岸上的G點(diǎn),看見(jiàn)河里有一只小船沿垂直于岸邊的方向劃過(guò)來(lái),此時(shí),測(cè)得小船C的俯角是∠FDC30°,若蘭蘭的眼睛與地面的距離是1.5米,BG1米,BG平行于AC所在的直線,迎水坡的坡度i43,坡高BE8米,求小船C到岸邊的距離CA的長(zhǎng).(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案