【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
【答案】
(1)證明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四邊形ADEC是平行四邊形,
∴CE=AD
(2)解:四邊形BECD是菱形,
理由是:∵D為AB中點,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,D為AB中點,
∴CD=BD,
∴四邊形BECD是菱形
(3)當∠A=45°時,四邊形BECD是正方形,理由是:
解:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D為BA中點,
∴CD⊥AB,
∴∠CDB=90°,
∵四邊形BECD是菱形,
∴菱形BECD是正方形,
即當∠A=45°時,四邊形BECD是正方形.
【解析】(1)由題意得到四邊形ADEC是平行四邊形,即CE=AD;(2)由D為AB中點,得到AD=BD,由CE=AD,得到BD=CE,因為BD∥CE,得到四邊形BECD是平行四邊形,由∠ACB=90°,D為AB中點,得到CD=BD,根據菱形的定義得到四邊形BECD是菱形;(3)由∠ACB=90°,∠A=45°,得到∠ABC=∠A=45°,AC=BC,因為D為BA中點,得到CD⊥AB,∠CDB=90°,由四邊形BECD是菱形,根據正方形的判定方法得到菱形BECD是正方形,得到四邊形BECD是正方形.
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,點M,N分別在射線OA,OB上(都不與點O重合),且∠MPN與∠AOB互補.若∠MPN繞著點P轉動,那么以下四個結論:①PM=PN恒成立;②MN的長不變;③OM+ON的值不變;④四邊形PMON的面積不變.其中正確的為_____.(填番號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b的圖象經過A(-2,-1),B(1,3)兩點,并且交x軸于點C,交y軸于點D.
(1)求該一次函數的解析式;
(2)求點C和點D的坐標;
(3)求△AOB的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中(AB≠BC),直線EF經過其對角線的交點O,且分別交AD,BC于點M,N,交BA,DC的延長線于點E,F,下列結論:①AO=BO;②OE=OF;③△EAM≌△FCN;④△EAO≌△DCO.其中一定正確的是()
A. ①② B. ②③
C. ①④ D. ①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,光源P在橫桿AB的正上方,AB在燈光下的影子為CD,AB∥CD,AB=2m,CD=6m,點P到CD的距離是2.7m,則點P到AB間的距離是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O是坐標原點,點A在y軸的正半軸上,坐標為,點B在x軸的負半軸上,坐標為,同時滿足,連接AB,且AB=10.點D是x軸正半軸上的一個動點,點E是線段AB上的一個動點,連接DE.
(1)求A、B兩點坐標;
(2)若,點D的橫坐標為x,線段的長為d,請用含x的式子表示d;
(3)若,AF、DF分別平分∠BAO、∠BDE,相交于點F,求∠F的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一直角三角形紙片,∠C=90°,BC=6,AC=8,現將△ABC按如圖那樣折疊,使點A與點B重合,折痕為DE,則CE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,得到A,B的對應點C,D,連接AC,BD,CD.
(1)直接寫出點C,D的坐標,求出四邊形ABDC的面積;
(2)在x軸上是否存在一點F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com