【題目】水果中的牛油果和桔子的維生素含量很高,因此深受人們喜愛(ài),農(nóng)夫果園水果商家11月份購(gòu)進(jìn)了第一批牛油果和桔子共300千克,已知牛油果進(jìn)價(jià)每千克15元,售價(jià)每千克30元,桔子進(jìn)價(jià)每千克5元,售價(jià)每千克10元.

(1)若這批牛油果和桔子全部銷(xiāo)售完獲利不低于3500元,則牛油果至少購(gòu)進(jìn)多少千克?

(2)第一批牛油果和桔子很快售完,于是商家決定購(gòu)進(jìn)第二批牛油果和桔子,牛油果和桔子的進(jìn)價(jià)不變,牛油果售價(jià)比第一批上漲a%(其中a為正整數(shù)),桔子售價(jià)比第一批上漲2a%;銷(xiāo)量與(1)中獲得最低利潤(rùn)時(shí)的銷(xiāo)量相比,牛油果的銷(xiāo)量下降a%,桔子的銷(xiāo)量保持不變,結(jié)果第二批中已經(jīng)賣(mài)掉的牛油果和桔子的銷(xiāo)售總額比(1)中第一批牛油果和桔子銷(xiāo)售完后對(duì)應(yīng)最低銷(xiāo)售總額增加了2%,求正整數(shù)a的值.

【答案】1)牛油果至少購(gòu)進(jìn)200千克;(2)正整數(shù)a的值為10

【解析】

1)設(shè)購(gòu)進(jìn)牛油果x千克,則購(gòu)進(jìn)桔子(300-x)千克,根據(jù)總利潤(rùn)=每千克利潤(rùn)×銷(xiāo)售數(shù)量結(jié)合獲利不低于3500元,即可得出關(guān)于x的一元一次不等式,解之取其最小值即可得出結(jié)論;

2)根據(jù)銷(xiāo)售總額=銷(xiāo)售單價(jià)×銷(xiāo)售數(shù)量,即可得出關(guān)于a的一元二次方程,解之取其正值即可得出結(jié)論.

1)設(shè)購(gòu)進(jìn)牛油果x千克,則購(gòu)進(jìn)桔子(300x)千克,

根據(jù)題意得:(3015x+105)(300x≥3500,

解得:x≥200

答:牛油果至少購(gòu)進(jìn)200千克.

(2)根據(jù)題意得:30(1+a%)×200(1﹣a%)+10(1+2a%)×100

=[30×200+10×100] ×1+2%

整理得:-a2+20a=140

解得:a1=10,a2=(不合題意,舍去).

答:正整數(shù)a的值為10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,若∠ADB是直角,求證:四邊形BFDE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的海岸線上有A、B兩個(gè)觀測(cè)點(diǎn),BA的正東方向,AB4km.從A測(cè)得燈塔C在北偏東53°方向上,從B測(cè)得燈塔C在北偏西45°方向上,求燈塔C與觀測(cè)點(diǎn)A的距離(精確到0.1km)(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=10AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最小值是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,OAB在平面直角坐標(biāo)系中的位置如圖所示.解答問(wèn)題:

(1)請(qǐng)按要求對(duì)ABO作如下變換:

OAB向下平移2個(gè)單位,再向左平移3個(gè)單位得到O1A1B1;

以點(diǎn)O為位似中心,位似比為2:1,將ABC在位似中心的異側(cè)進(jìn)行放大得到OA2B2

(2)寫(xiě)出點(diǎn)A1,A2的坐標(biāo): ;

(3)OA2B2的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列兩則材料,回答問(wèn)題:

材料一:我們將稱(chēng)為一對(duì)“對(duì)偶式”因?yàn)?/span>,所以構(gòu)造“對(duì)倆式”相乘可以有效地將中的去掉.例如:已知,求 的值.解:,

材料二:如圖,點(diǎn),點(diǎn),以AB為斜邊作,則,于是,,所以.反之,可將代數(shù)式的值看作點(diǎn)到點(diǎn)的距離.

例如:=

所以可將代數(shù)式的值看作點(diǎn)到點(diǎn)的距離.

利用材料一,解關(guān)于x的方程:,其中;

利用材料二,求代數(shù)式的最小值,并求出此時(shí)yx的函數(shù)關(guān)系式,寫(xiě)出x的取值范圖;

所得的yx的函數(shù)關(guān)系式和x的取值范圍代入中解出x,直接寫(xiě)出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鐵路建設(shè)助推經(jīng)濟(jì)發(fā)展,近年來(lái)我國(guó)政府十分重視鐵路建設(shè).渝利鐵路通車(chē)后,從重慶到上海比原鐵路全程縮短了320千米,列車(chē)設(shè)計(jì)運(yùn)行時(shí)速比原鐵路設(shè)計(jì)運(yùn)行時(shí)速提高了120千米/小時(shí),全程設(shè)計(jì)運(yùn)行時(shí)間只需8小時(shí),比原鐵路設(shè)計(jì)運(yùn)行時(shí)間少用16小時(shí).

(1)渝利鐵路通車(chē)后,重慶到上海的列車(chē)設(shè)計(jì)運(yùn)行里程是多少千米?

(2)專(zhuān)家建議:從安全的角度考慮,實(shí)際運(yùn)行時(shí)速減少m%,以便于有充分時(shí)間應(yīng)對(duì)突發(fā)事件,這樣,從重慶到上海的實(shí)際運(yùn)行時(shí)間將增加m%小時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】構(gòu)造圖形解題,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無(wú)措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過(guò)構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:

實(shí)例一:1876年,美國(guó)總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由S四邊形ABCD=SABC+SADE+SABE得:a+b2=2×ab+c2,化簡(jiǎn)得:a2+b2=c2

實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程x2+ax=b2的圖解法是:畫(huà)RtABC,使∠ACB=90°,BC=AC=|b|,再在斜邊AB上截取BD=,則AD的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖).

請(qǐng)根據(jù)以上閱讀材料回答下面的問(wèn)題:

1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫(xiě)出甲圖要證明的數(shù)學(xué)公式是______,乙圖要證明的數(shù)學(xué)公式是______,體現(xiàn)的數(shù)學(xué)思想是______;

2)如圖2,若2-8是關(guān)于x的方程x2+ax=b2的兩個(gè)根,按照實(shí)例二的方式構(gòu)造RtABC,連接CD,求CD的長(zhǎng);

3)若x,y,z都為正數(shù),且x2+y2=z2,請(qǐng)用構(gòu)造圖形的方法求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案